
Toward More Efficient NoC Arbitration:
A Deep Reinforcement Learning Approach

Jieming Yin* Yasuko Eckert* Shuai Che* Mark Oskin*† Gabriel H. Loh*
*Advanced Micro Devices, Inc. †University of Washington

{jieming.yin, yasuko.eckert, shuai.che, mark.oskin, gabriel.loh}@amd.com

Abstract—The network on-chip (NoC) is a critical resource
shared by various on-chip components. An efficient NoC ar-
bitration policy is crucial in providing global fairness and
improving system performance. In this preliminary work, we
demonstrate an idea of utilizing deep reinforcement learning
to guide the design of more efficient NoC arbitration policies.
We relate arbitration to a self-learning decision making process.
Results show that the deep reinforcement learning approach can
effectively reduce packet latency and has potential for identifying
interesting features that could be utilized in more practical
hardware designs.

I. INTRODUCTION

Advancements in computational speed, memory capacity,
and “Big Data” have enabled a resurgence in artificial intelli-
gence (AI). Within the broad field of AI is a subfield called
machine learning, in which computers are iteratively trained on
sets of data using various algorithms, and then apply what has
been “learned” to, for example, make predictions or to classify
data with new inputs. Deep learning is a subfield within
machine learning in which the algorithms in question attempt,
loosely, to mimic the structure and behavior of biological neu-
rons in order to recognize patterns in data. Automated image
categorization and natural language processing are common
applications of deep learning, but there are many other emerg-
ing and future use cases for deep learning, including gaming,
robotics, medicine, finance, high-performance computing, and
more. Deep learning has advanced in sophistication to such a
degree that it is beginning to be applied to areas in which,
traditionally, human expert knowledge and experience was
considered vital to decision making. Deep learning can, in
some situations, augment human expert intelligence in order
to enable deeper insights and provide more effective decision
making than humans could accomplish without the application
of these techniques.

One such application of deep learning is in computer system
designs. Recent work has used machine learning for identify-
ing patterns to aid optimizing memory-controller policies [1]
and hardware prefetchers [2], [3]. We believe that these are
just the tip of the iceberg. We expect more designers to utilize
deep learning to discover previously unexploited patterns for
optimization, creating opportunities for unique innovations at
a faster rate.

In this paper, we use the design of network on-chip (NoC)
arbitration policies as a case study for examining the potential
benefits of deep-learning-assisted microarchitecture designs.
The NoC is a shared resource that arbitrates on-chip traffic

from various components, such as cores, caches, and memory
controllers. Unoptimized arbitration logic can lead to sub-
optimal performance, but designing an efficient policy is a
challenging task because the policy must be effective for
dynamically variable traffic patterns with different levels of
message criticality while ensuring forward progress and fair-
ness.

We relate NoC arbitration to a reinforcement learning prob-
lem that addresses decision making. Reinforcement learning
is a machine learning method in which the agent learns
control policies by interacting with a stochastic environment.
To be specific, we augment the NoC arbiters with a deep
Q-network that observes the router state and evaluates the
long-term performance impact of arbitration decisions. During
execution, the arbiter learns to optimize its arbitration policy
to maximize long-term performance. Instead of building an
inference neural network in hardware, this preliminary work
aims to demonstrate the feasibility and effectiveness of apply-
ing deep reinforcement learning to assist in microarchitecture
design. Results show that the proposed deep reinforcement
learning model is able to significantly reduce packet latency
under synthetic traffic. Moreover, we believe the proposed
approach has potential for identifying useful behaviors and
exploring new features that researchers can exploit in practical,
implementable NoC arbitration policies.

II. BACKGROUND AND PROBLEM FORMULATION

A. NoC Arbitration

An NoC consists of routers that are connected with links.
As numerous on-chip components (endpoints) compete for
the same network resources, arbitration becomes a critical
router functionality for controlling and hopefully reducing
network congestion. The arbiter grants an output port to one
of multiple input ports for sending a packet. Traditional round-
robin arbitration provides a high degree of fairness by treating
each input port fairly and guaranteeing fairness in scheduling;
however, it considers only local fairness for each router, and
therefore provides insufficient equality of service (i.e., link
bandwidth allocation becomes more unfair the longer the
routes are). Approximated age-based packet arbitration [4]
provides better equality of service but has limitations regarding
fairness of bandwidth allocation. Fair Queueing [5] and Virtual
Clock [6] achieve fairness and high network utilization by
maintaining per-flow state and queues, but they are costly to
implement in an NoC.



B. Reinforcement Learning

In reinforcement learning, the agent attempts to learns the
optimal actions that lead to maximum long-term reward by
interacting with the environment, and the environment returns
a numerical reward to the agent for each action it takes. As
one well-known branch of reinforcement learning, value-based
learning (e.g., Q-learning) uses a Q-value to represent the
quality of taking a particular action a when an agent is in
state s [7]. In its simplest form, for each state s, there may be
several possible actions to take. An agent can either choose
an action a that has the highest (currently estimated) Q-value
among all possible actions, or a random action to explore new
trajectories. After taking the action, the agent transitions to a
new state s′ while in the meantime the environment provides
a reward r. With the tuple 〈s,a,r,s′〉, the algorithm uses the
following Bellman Equation as an iterative update, which is
used to maximize the expected cumulative reward achievable
from a given state-action pair:

Q(s,a) = Q(s,a)+α[r+ γmaxa′Q(s′,a′)−Q(s,a)]
where α is the learning rate and γ is a discounting factor. To
perform well in the long-term, both the immediate reward and
the future rewards need to be accounted for. γ determines how
much weight is given to future rewards.

Traditional Q-learning uses a Q-table to store the Q-
value for each state-action pair. However, for many real-
world problems, the state-action space can be extremely large.
For example, when using reinforcement learning to play
Atari® games, a Q-value for each image frame and possible
actions must be tracked, requiring an impractical amount of
storage space [8]. One possible solution is to use a neural
network to approximate the Q-function. Given a state s, the
neural network can output a vector of approximated Q-values
for each possible action. Then, the action with the highest
Q-value is chosen. This technique is called deep Q-learning
(DQL) [8]. In this paper, we adopt DQL and use a multi-layer
perceptron neural network to approximate the Q-function.

C. NoC Arbitration as a Reinforcement Learning Problem

Reinforcement learning can be applied to the problem of
NoC arbitration to learn an efficient arbitration policy for a
given NoC topology. We can train the agent (a recommen-
dation system for the arbiter) such that for a given state
(a collection of input buffers at a router all competing for
the same output port) in the environment (NoC), the agent
recommends an action (one input buffer) that would maximize
an accumulated reward (e.g., network throughput). In our
preliminary exploration, all routers in the system share the
same agent for faster training.

III. DESIGN

In this section, we first provide an overview of the DQL-
based NoC arbitration model. Then we describe the DQL
model in detail, explain how arbitration decisions are made,
and how to train the model for better prediction. While
building a neural network in hardware is costly, our goal is

Arb

Type
Global
age

Local
age Dist Hop

Environment

Agent
State1

Action2

Reward3

Fig. 1: Conceptual diagram of the proposed DRL-based NoC
arbitration model.

to propose a framework that assists designers in discovering
useful features.

A. DQL-based NoC Arbitration Model

Figure 1 shows a conceptual diagram of the proposed DQL-
based NoC arbitration model. Each cycle, each router interacts
with the agent by sending its own router state(s). The agent
then evaluates the Q-values for all possible actions and returns
the values to the router. Based on the Q-values, the router
selects one input buffer and grants the output port. Meanwhile,
a reward is sent to the agent for training and further evaluation.

Our proposed DQL model consists of the following major
components:

1) Environment: The environment is the modeled NoC
consisting of routers, links, as well as processing elements
that generate and consume packets.

2) Agent: The agent takes the router state (see below)
as an input and computes the Q-value for each action. In
traditional table-based Q-learning, the number of table entries
grows exponentially with the number of features used in state
representation. It is impractical to maintain a table for the
arbitration problem we are solving. As a result, we use a neural
network to approximate the Q-values.

3) State: Each router has one state for each output port.
Each state is represented with a feature vector for packets
from all input buffers. Consider a router with n input ports
and m output ports, and each input port has k input buffers
(e.g., for multiple message classes, virtual channels). In each
cycle, there could be multiple packets with different features
from different input buffers competing for the same output
port. Thus, we use m state vectors per router, with one vector
per output port. A state vector consists of a list of features
from all packets that compete for the same output port, as well
as zero inputs for empty input buffers and irrelevant packets
that request other output ports. To be more specific, assuming
each packet has p features, the total length of the state vector
is n× k× p. Because all routers share the same DQL agent,
the input layer width of the neural network used by the agent
must match the width of the largest router’s state vector. In
other words, all state vectors from different routers must have
the same width, and smaller routers must zero pad their state
vectors as needed. The agent considers one state vector at a
time.

Figure 2 shows an example for a router with three input
ports and two output ports, where each input port has two



1
2

1
2

1
2

In 1

In 2

In 3

Out 1

Out 2

Output 1 state vector:

0.3 … 0.7 0 … 0 0.6 … 0.2 0 … 0

Features 
for In1-1

Zero inputs
for In1-2

Features 
for In2-1

Zero inputs for In2-2, In3-1, In3-2

Output 2 state vector:

0.3 … 0.4 0.5 … 0.1 0 … 0

Features 
for In2-2

Features 
for In3-1

Zero inputs
for In3-2

0 … 0 0 … 0

0 … 0

Zero inputs for In1-1, In1-2, In2-1

0 … 0 0 … 0

Fig. 2: Router state example.

buffers. For simplicity, this example assumes all packets are
one-flit wide, and each packet has k features. Packets from the
first buffer of Input 1 (In1 1) and the first buffer of Input 2
(In2 1) compete for Output 1, while the packets from the
second buffer of Input 2 (In2 2) and the first buffer of Input 3
(In3 1) compete for Output 2. According to our definition of
state, this router has two state vectors. The state vector for
Output 1 starts with k features for In1 1, followed by k zeros
because In1 2 does not have a packet. The next k elements
are features for In2 1, followed by 3k zeros for packets that
request Output 2 and for empty buffers. Similarly, the state
vector for Output 2 starts with 3k zeros, followed by features
for In2 2 and In3 1, and zero inputs for In3 2.

In this work, we consider the packet features listed below.
Each feature is normalized such that all elements in the state
vector are between 0 and 1.

• Type: an identifier specifying whether a packet is a
request, response, or coherence probe message.

• Global age: number of network cycles spent from the
point when the packet is generated.

• Local age: number of network cycles spent from the point
when the packet arrived at the local router.

• Distance: number of total hops from the packet’s source
to destination.

• Hop: number of hops the packet has traversed so far.

4) Action: The agent in our model generates a vector of
Q-values. Each element of the vector corresponds to an input
buffer. Again, because all routers share the same agent, the
neural network’s output layer width must match the number of
input buffers of the largest router. The Q-value vector is sent
back to the router, which is used for making an arbitration
decision (described in Section III-B).

5) Reward: After taking an action, the environment gener-
ates a reward and sends it to the agent. The reward determines
how good the taken action is, and the Q-learning algorithm is
designed to maximize the long-term reward. In the context
of NoC arbitration, several different metrics are possible for
defining a reward. Examples include packet latency, network

throughput, and fairness. In this work, we consider the follow-
ing reward options:
• Reciprocal of average packet latency. For every fixed

period of time (e.g., 100 cycles), we calculate the average
latency L of all packets sent through the NoC. Because
lower latencies indicate better performance, the reciprocal
of average packet latency (i.e., 1/L) is used as a reward.
This value is used for all actions in the next period
regardless of the actual actions taken.

• Fixed reward of 1 for each action. The intuition behind
using a fixed reward is to maximize the total number of
arbitration actions. The more arbitration is performed, the
more packets are sent in the NoC, which leads to a higher
overall network throughput.

• Link utilization in the previous cycle. The utilization is
calculated as the number of active links in the previous
cycle divided by the total number of network links.
The goal is to maximize link utilization which in turn
improves the network throughput.

B. Decision Making

Depending on input status and output port availability, a
router queries the agent up to m times every cycle, where m
is the number of output ports. If none of the input packets
request an output port, or an output port is not available (e.g.,
in the middle of transmitting a multi-flit packet), the router
does not issue a query for that particular output. If an output
port is requested by only one input packet, the output port is
directly granted to the input buffer without querying the agent.

For each issued query, the agent generates a vector of Q-
values and sends it back to the router. After receiving the
Q-value vector, the router grants the output port in question
to the input buffer that has the largest Q-value. There are a
few cases in which the router selects an input buffer with a
lower Q-value. The largest Q-value element might correspond
to an empty buffer, especially during the initial training phase,
when there are other buffers with pending packets. Another
case involves an input-port conflict. Because an input port can
route at most one packet per cycle, no more than one output
port should be granted to the same input port in the same
cycle. In these cases, the router selects an input buffer with
the next largest Q-value.

C. Model Training

Certain reinforcement learning algorithms present instability
when the Q-value function is approximated with a nonlinear
function such as a neural network. DQL stabilizes the training
using experience replay [9] with a separate target network [8].
In this section, we explain how the parameters θ (weights
and biases) of the neural network are updated, and how we
stabilize the training.

Updating Neural Network Parameters. There are two
neural networks in our model: a prediction network Q with
parameters θ , and a target network Q̂ with parameters θ̂ .
The prediction network is used to compute the Q-value vector
that the router uses to make arbitration decisions. The target



network is used to compute the target Q-values that are used
to update parameters. In each training step, a gradient descent
on

1
2 [r+ γmaxa′Q̂(s′,a′)−Q(s,a)]2

is performed with regard to the prediction network’s param-
eters θ . To stabilize the training, we set θ̂ = θ for every
fixed number of steps (100 steps in our model). In other
words, the prediction network parameters are updated in each
training step, while the target network parameters are updated
periodically.

Experience Replay. Each time the agent interacts with the
environment, an experience record 〈s,a,r,s′〉 is generated and
stored in a replay memory. The replay memory is a circular
buffer with a limited number of entries (200 in our model)
and the oldest record is overwritten by a new record. When
training the model, instead of using the most recent record,
records are randomly sampled from the replay memory to
form minibatches. Based on the current state s, the agent
only provides the router with a vector of Q-values, and the
router decides which input buffer to select. Therefore, the
router needs to inform the agent of the next state s′ after
arbitration is performed. Experience replay breaks the simi-
larity of subsequent training samples, which in turn reduces
the likelihood of the neural network from being directed into
local minima. In addition, experience replay allows the models
to learn the past experience multiple times, leading to faster
model convergence.

IV. EVALUATION

In this section, we describe our evaluation environment.
Then we present the experimental results and our findings.

A. Experimental Methodology

We use Garnet [10] in our evaluation. We primarily study
a 4×4 mesh network with 2-stage routers. Each router is
attached to a processing element that generates and consumes
network packets. The default routing algorithm is XY routing,
and the baseline arbitration policy is round-robin. Without loss
of generality, we generate three types of messages: 1) request
messages, which are 1 flit in length; 2) forward messages,
which are also 1 flit in length; and 3) response messages,
which are 5 flits in length (one header flit plus four more
data flits for a cacheline). There are separate input buffers
for different message classes, and each message class has
one virtual channel (VC) with 4-flit buffers. We also evaluate
and present results for a larger network (8×8 mesh) and
varying numbers of virtual channels, but we primarily focus
our discussion on the 4×4 mesh 1-VC configuration.

We evaluate the proposed DQL-based arbitration model
with three traffic patterns: 1) Uniform Random: destinations
are randomly selected with a uniform distribution; 2) Bit-
complement: each node sends messages only to the node
corresponding to the 1’s complement of its own address; and
3) Transpose: node (x,y) sends messages only to (y,x).

The DQL framework described in Section III is imple-
mented and integrated into Garnet. The agent neural network

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Epoch

All_feature
Type
Global_age
Local_age
Dist
Hop

(a) Uniform Random (0.23 packet/cycle/node).

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Epoch

All_feature

Type

Global_age

Local_age

Dist

Hop

(b) Bit-complement (0.17 packet/cycle/node).

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Epoch

All_feature

Type

Global_age

Local_age

Dist

Hop

(c) Transpose (0.15 packet/cycle/node).

Fig. 3: Training results comparison for agent neural networks
with different input features across three different traffic pat-
terns. Each figure shows only 15 epochs.

consists of one input layer, one hidden layer, and one output
layer. The activation functions we use for the hidden and
the output layer are Sigmoid and ReLU, respectively. We
use five features from each message (type, global age, local
age, source-to-destination distance, and hop count), and three
reward criteria (reciprocal of average latency, fixed reward,
and link utilization). To add an additional comparison point,
we provide an ideal implementation of age-based arbitration
where each packet is timestamped at injection and the age
continues to increase every cycle. Age-based arbitration is
costly to implement in real hardware but provides global
fairness [11].

B. Experimental Results

1) Feature Studies: Figure 3 shows the training results for
the proposed model with different input features. For each
traffic pattern, we first sweep the network injection rate using
the baseline RR arbitration routers to find the saturation point



at which the packet latency increases dramatically. We then
train the DQL-based model using the same injection rate.
The model is trained for 30 epochs, and each epoch is three
million cycles long. The parameters of the neural network are
randomly initialized for the first epoch. At the end of each
epoch, the updated parameters are saved; in the next epoch,
the saved parameters are used to initialize the neural network.
In this figure, All f eature means that the router input states
include all five features described in Section III, while the rest
only include a single feature. We notice that all features except
for Type converge after a few epochs of training. Features such
as Global age and Dist perform well across all traffic patterns
while other features, namely Local age and Hop, significantly
reduce packet latency under Uniform Random and Transpose
traffic but are less effective under Bit-complement traffic. In
addition, the configuration with all features combined does not
necessarily lead to the lowest latency under Uniform Random
and Bit-complement traffic.

TABLE I: Average packet latency comparison. Feature(s) that
lead to the best performance improvement are noted in the
parenthesis.

RR Age DQL
Uniform Random 4855.8 28.7 56.1 (Local age, Dist)
Bit-complement 5198.6 24.7 36.9 (Dist)

Transpose 3600.8 19.8 41.8 (All feature)

To demonstrate the effectiveness of the proposed model,
Table I shows a comparison of packet latency across round-
robin, age-based, and DQL-based arbitration policies. Again,
all of the networks operate at the injection rate that saturates
the RR-based network. Age-based arbitration prioritizes the
packet with the oldest age, thereby providing global fairness
and reducing the variance in packet transit time. It also
reduces the average packet latency in the evaluated system.
Our proposed DQL-based arbitration model is also effective
in reducing packet latency. At the RR-based network’s sat-
uration point, 98.8%, 99.2%, 98.8% of latency reduction is
achieved for uniform random, bit-complement, and transpose
traffic, respectively. In terms of throughput, as shown in Fig-
ure 4, the DQL-based arbitration policy improves the network
throughput over RR-based policy by 4.5%, 6.2%, and 7.1%
under uniform random, bit-complement, and transpose traffic,
respectively.

Although not all features lead to promising latency re-
ductions, designers can use the proposed model to filter out
uninteresting features and focus on potentially useful features.
For example, Dist and Hop are shown to reduce latency, and
they have been used to approximate the global age in prior
work [4], [12]. Although we only evaluate a small number
of features in this work, we believe our proposed model can
potentially be used to explore a wide range of new features,
enabling architects to design new arbitration policies and/or
improving existing policies.

2) Study on Reward Criteria: Figure 5 shows a comparison
among our three reward criteria: reciprocal of average packet

latency, fixed reward for each action, and link utilization in
the previous cycle. Overall, all three criteria lead to significant
reduction in network latency compared to the RR policy. As
training proceeds, Avg latency and Link utilization perform
slightly better than Fixed reward. Compared to the features,
we found that the choice of reward is less critical as long
as the criterion is associated with a performance metric that
designers target for improvement.

TABLE II: Average packet latency reduction at saturation point
after using the DQL model

RR DQL DQL (trained
in 4x4 mesh)

4x4 mesh
2VC/class

Uniform Random 5087.4 19.2 -
Bit-complement 1339.7 22.7 -

Transpose 3497.6 402.5 -

8x8 mesh
1VC/class

Uniform Random 10397.7 3055.3 2765.0
Bit-complement 3237.9 43.8 652.8

Transpose 5640.9 1693.1 1118.5

3) Network Configurations: In this study, we investigate
the proposed model with two different network configurations.
The first system is a 4×4 mesh network, but we provide two
VCs for each message class in contrast to only one in the
previous study. The second system is an 8×8 mesh network,
and each message class has one VC. Table II shows the latency
results. For the last column, we apply the neural network that
is trained in a 4x4 mesh 1-VC system to an 8x8 mesh 1-VC
system and disable on-line training. The purpose is to study
whether a neural network that is trained in one system can be
applied to another system to reduce training overheads. Notice
that the number of input buffers (neurons) for a 1-VC router
differs from a 2-VC router, thus we cannot use the same neural
network in the 2-VC system. Results show that our proposed
system is capable of reducing packet latency compared to the
RR policy in all cases. We also found that a pre-trained neural
network is effective in a different system. As we stated, this
is a preliminary work of utilizing machine learning to assist
in NoC design. We will look into the interpretability of the
neural network and broader feature exploration in future work.
Overall, we believe that the proposed model is applicable to
a wide range of systems and can be used to guide the design
of NoC arbitration policies.

V. RELATED WORK

In additional to the work outlined in Section II-A, iS-
LIP [13] is an RR-based policy that performs multiple iter-
ations to find a conflict-free input-to-output mapping. Ping-
pong arbitration [14] is another RR-based policy that divides
the inputs into groups and applies arbitration recursively to
provide fair sharing of switch bandwidth among inputs. Das et
al. [15] propose a slack-aware arbitration policy that utilizes
memory access criticality information for packet scheduling
within the NoC.

Machine learning in microarchitecture is not new, and there
is a large body of prior work that utilizes machine learning
techniques to improve architectural designs. The perceptron



0

50

100

150

200

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Injection Rate (pkt/cycle/node)

RR DQL Age

(a) Uniform Random

0

50

100

150

200

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Injection Rate (pkt/cycle/node)

RR DQL Age

(b) Bit-complement

0

50

100

150

200

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Injection Rate (pkt/cycle/node)

RR DQL Age

(c) Transpose

Fig. 4: Throughput comparison of round-robin (RR), age-based (Age), and DQL-based (DQL) arbitration policies.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
ve

ra
ge

 P
ac

ke
t 

La
te

n
cy

Epoch

Avg_latency

Fixed_reward

Link_utilization

Fig. 5: Training results comparison for agent neural networks
with different reward criteria under uniform random traffic.

branch predictor [16] uses a linear classifier that is trained
online to predict whether a branch is taken or not. Ipek
et al. [1] proposed a reinforcement learning-based memory
controller that interacts with the system to optimize perfor-
mance. Teran et al. [17] proposed perceptron learning for reuse
prediction, which uses tags and program counters to learn
correlations between past cache access patterns and future
accesses. More recently, Zeng et al. [2] proposed a long short-
term memory-based memory prefetcher that learns to capture
regular memory access patterns. Hashemi et al. [3] relate con-
temporary prefetching strategies to n-gram models in natural
language processing and propose a recurrent neural network-
based prefetcher that handles more irregular benchmarks.

VI. CONCLUSION AND FUTURE WORK

In this work, we demonstrated the effectiveness of applying
deep Q-learning to the design of NoC arbitration policies. The
proposed DQL-based arbitration model observes router states
and evaluates the performance impact of selecting a candidate
input buffer for arbitration. Through online learning, the model
learns to make decisions that maximize the long-term NoC
performance. We evaluated the proposed approach with var-
ious system configurations and synthetic traffic patterns, and
the experimental results show that the DQL-based arbitration
model is effective in reducing packet latency. While a full DQL
algorithm is not practical to directly implement in a real NoC,
we believe that the proposed approach can assist designers in
exploring potentially useful features to design more efficient
NoC arbitration policies.

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

REFERENCES

[1] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proceedings
of the 35th Annual International Symposium on Computer Architecture,
2008.

[2] Y. Zeng and X. Guo, “Long short term memory based hardware
prefetcher: A case study,” in Proceedings of the International Symposium
on Memory Systems.

[3] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access patterns,”
eprint arXiv:1803.02329 [cs.LG], 2018.

[4] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee, “Probabilistic
distance-based arbitration: Providing equality of service for many-core
cmps,” in Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010.

[5] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” in Symposium Proceedings on Communications
Architectures &Amp; Protocols, 1989.

[6] L. Zhang, “Virtual clock: A new traffic control algorithm for packet
switching networks,” in Proceedings of the ACM Symposium on Com-
munications Architectures &Amp; Protocols, ser. SIGCOMM ’90.

[7] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, 518(7540):529–533, Feb 2015.

[9] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine Learning, vol. 8, no. 3, pp. 293–
321, May 1992.

[10] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed
on-chip network model inside a full-system simulator,” in Performance
Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Interna-
tional Symposium on. IEEE, 2009, pp. 33–42.

[11] D. Abts and D. Weisser, “Age-based packet arbitration in large-radix
k-ary n-cubes,” in Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, ser. SC ’07.

[12] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H. Loh, “There
and back again: Optimizing the interconnect in networks of memory
cubes,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, 2017.

[13] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, Apr.

[14] H. J. Chao, C. H. Lam, and X. Guo, “A fast arbitration scheme for
terabit packet switches,” in Global Telecommunications Conference,
1999. GLOBECOM ’99, vol. 2, 1999, pp. 1236–1243 vol.2.

[15] R. Das, O. Mutlu, T. Moscibroda, and C. Das, “Aergia: Exploiting packet
latency slack in on-chip networks,” in ISCA ’10.

[16] D. A. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, 2001.

[17] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse
prediction,” in The 49th Annual IEEE/ACM International Symposium on
Microarchitecture, 2016.


