
Distilling Arbitration Logic from Traces using Machine
Learning: A Case Study on NoC

Yuan Zhou
Cornell University

Ithaca, USA
yz882@cornell.edu

Hanyu Wang†
Shanghai Jiao Tong University

Shanghai, China
whynull@sjtu.edu.cn

Jieming Yin
Lehigh University
Bethlehem, USA
yin@lehigh.edu

Zhiru Zhang
Cornell University

Ithaca, USA
zhiruz@cornell.edu

Abstract— Arbitration logic is extensively used in modern computer
architectures to dynamically determine how shared hardware resources
are allocated or accessed. Recent work has shown that machine learning
techniques can learn non-obvious yet effective arbitration policies, which
in simulation demonstrate superior performance over human-designed
heuristics. However, existing methods based on deep learning are too
expensive to be directly implemented as an arbitration unit in hardware.
While some prior efforts managed to manually analyze and reduce a deep
learning model into relatively small circuits in certain cases, such ad hoc
and labor-intensive approaches cannot easily generalize. In this work,
we propose a new methodology to automatically “distill” the arbitration
logic from simulation traces. Starting by training a deep learning model,
we leverage tree-based models as a bridge to convert the more complex
model to a compact logic implementation. This paper presents a case
study of the proposed methodology on a network-on-chip port arbitration
task. Compared with an array of combinational multipliers that exactly
computes the neural network output, our arbitration logic achieves up to
282x area reduction without significant performance degradation. Under
the training traffic, our arbitration logic achieves up to 64x reduction in
average packet latency and up to 5% increase in network throughput
over the FIFO arbitration policy. The distilled arbitration policy is also
able to generalize to different injection rates and traffic patterns.

Index Terms—Network-on-Chip, Machine Learning

I. INTRODUCTION

Resource sharing is common in modern computer systems to
balance performance and hardware cost. In order to maximize
utilization and achieve high performance, the hardware needs to
frequently make arbitration decisions to allocate access to shared
resources on the fly. The design of an effective arbitration unit
often involves intricate trade-offs amongst performance, area, and
power. Traditionally, such arbitration policies and circuits are almost
exclusively designed by humans. However, as modern computer
architectures become increasingly complex and heterogeneous, it is
much more difficult for humans to devise efficient heuristics that can
account for information from various parts of the system.

The recent advances in machine learning (ML) provide an op-
portunity to overcome this challenge. Using ML techniques, an
effective heuristic can be learned by the model from a sufficient
amount of data. Early attempts along this line investigated perceptron
branch predictors [7], [11] and memory controllers using table-based
reinforcement learning algorithms [10], [17]. More recently, there
is an emerging trend of applying deep learning (DL) to tackle the
decision making problems in computer architecture, such as cache
replacement [22], [23], prefetching [8], [31], network-on-chip (NoC)
packet arbitration [30], and NoC dynamic frequency-voltage scal-
ing [32]. In many cases, DL techniques have been shown to achieve a
superior performance in simulation. However, it is not always feasible
to directly use a DL accelerator as an arbitration unit due to its high
overhead in both latency and area. As a result, feature engineering and
manual analysis of neural network models are necessary to convert

†This work was performed while Hanyu was a (remote) research intern
with Cornell University.

Simulation 
Traces

DNN Model

Tree-Based 
Model

Combinational 
Logic

Not directly labeled
RL training

Input collection
Output quantization

Labeled
Supervised training

Regularization
Weight quantization

Fig. 1: Proposed flow of distilling logic from traces. For supervised
tasks, tree models can be directly trained from simulation traces. This
paper focuses on converting deep learning models to circuits.

DL models to affordable arbitration logic implementations. While
such manual conversion is effective for small neural networks, it
quickly becomes intractable when the model becomes complicated
and hard to interpret. A fully automated conversion step is therefore
needed to fill the missing link of applying DL to arbitration problems
in computer architecture.

In this work, we propose to tackle this challenge by leveraging tree-
based models as a bridge between neural network models and circuit
implementations. Figure 1 outlines the proposed approach, where
tree-based models are trained using the outputs of a pre-trained DL
model. Since tree models can be easily converted to circuits, the ar-
bitration logic can be directly “distilled” from simulation traces. This
flow is very suitable for learning arbitration logic because arbitration
policies can be effectively learned using deep reinforcement learning.
Under this scenario, labels are not available during the training
process, and the DL model learns to predict the potential reward
(or priority score) of each legal action. In such cases, converting DL
models into tree models improves the interpretability of the learned
policy, because designers can examine the tree models and check
whether the policy complies with their experience. Depending on the
exact problem setup, CART trees [3], random forests [9], or model
trees [13] can be used to approximate the output of the DL model.

We believe our approach can potentially be applied to many
decision-making problems in computer systems. In this work, we
focus on on-chip networks and present a detailed case study on the
NoC arbitration problem. NoC arbitration is a well-defined problem,
and a good arbitration policy is critical for fairness, bandwidth uti-
lization, and performance [14], [21]. In addition, the arbitration logic
in a NoC router is subject to stringent area and latency constraints, so
it is necessary to generate efficient and high-performance arbitration
logic. Our major technical contributions are threefold:



• We are the first to propose a methodology for automatically
generating compact, application-specific arbitration logic from
simulation traces.

• We present a case study on NoC packet arbitration and compre-
hensively analyze the learned arbitration policy. Specifically, we
found that linear model trees are very suitable for this task and
can be converted to compact arbitration logic.

• The learned arbitration policy achieves up to 64× reduction in
average packet latency and 4.9% increase in network throughput
over the FIFO arbitration policy on the training traffic, and is
able to generalize to different injection rates and traffic patterns.
Compared with the DL agent, the generated arbitration logic
achieves comparable performance with up to 282× area reduction.

II. RELATED WORK

Many critical problems in computer architecture can be effectively
solved using ML. One of the most well-known applications of ML
in computer architecture is probably the perceptron branch predictor,
where a set of perceptrons are continuously updated during CPU
execution to make accurate predictions [11]. Similar ideas are later
applied to cache replacement [24] and prefetching [2]. Another line of
research focuses on using reinforcement learning (RL) to solve typical
arbitration problems, including memory request scheduling [10],
NoC routing policy [6], and cache prefetching [20]. These works
implement their RL agents using Q-tables stored in memories, and
the content of the memories are updated at run time to adapt to
different workloads. The size of the Q-tables is subject to area and
power constraints, which limits the complexity of the policies these
approaches can learn.

With the development of deep learning, recent works explore the
opportunity of applying deep learning techniques to computer archi-
tecture. Hashemi et al. performed a pure theoretical study of applying
long-short term memory (LSTM) to cache prefetching [8]. Zeng et al.
explored a similar idea, but embedded a small LSTM accelerator into
the prefetcher to perform online training and inference [31]. Shi et al.
proposed an LSTM-inspired cache replacement policy implemented
as a support vector machine, where the hardware implementation
and feature representation are designed after carefully examining the
attention coefficients of the LSTM [23]. Zheng et al. proposed to
use deep Q-Networks (DQN) for dynamic frequency-voltage scaling
(DVFS) in a NoC [32]. The latency of the neural network accelerator
is tolerable because the DVFS decisions are made infrequently. Yin
et al. presented a detailed case study on using DQN to learn a NoC
arbitration policy [30]. By analyzing the weights of the trained neural
network and incorporating domain knowledge, the authors were
able to implement effective arbitration policies with small hardware
overheads. Similarly, Sethumurugan et al. derived a cost-effective
cache replacement policy from DQN by manually analyzing the
trained neural network [22]. Notice that when implementing the DL
model as hardware, existing works either directly use an expensive
accelerator, or require extensive manual analysis and optimization to
derive a compact hardware implementation. Our work proposes an
automated approach to generate arbitration logic from data, which
contains a core step of converting a DL model to logic. Specifically,
our case study shows how the proposed approach generates efficient
arbitration logic with a setup similar to [30].

While our approach distills circuits from data and deep learning
models, another relevant line of research focuses on efficient hard-
ware implementation of deep neural networks. LUTNet [27] provides
an efficient way of implementing binarized neural networks [5] on
FPGAs by heavy pruning, fine-tuning, and directly mapping the

XNOR gates in the network to look-up tables (LUTs). LogicNets go
one step further by implementing the accumulation and activation
functions also as LUTs [26]. These techniques are designed for
mapping low-precision networks onto FPGAs, while our approach
maps full-precision networks to ASICs.

III. BACKGROUND

A. NoC Arbitration

In a NoC, routers are interconnected through links. A NoC router
consists of multiple input and output ports. Within each input port,
one or more virtual channels (VCs) are used to store incoming pack-
ets. NoC arbitration occurs when packets from multiple input VCs
compete for the same output port. The arbitration logic determines
which VC is given the priority to use the output port upon contention.
NoC arbitration policy is critical for the network’s performance — a
good policy provides better fairness and achieves low packet latency
as well as high network throughput, while a sub-optimal policy could
buffer an old packet in the network for a long time, resulting in poor
network performance. Round-robin arbitration is a commonly used
policy that guarantees fairness in scheduling by treating each input
port and input VC equally. However, it only considers local fairness
for individual routers, and therefore provides insufficient equality
of service (i.e., link bandwidth allocation becomes more unfair the
longer the routes are). Global-age-based arbitration prioritizes the
packet with the oldest age, thereby providing global fairness and
reducing the variance in packet transit time. Although global-age-
based policy is considered one of the best policies, its hardware cost
is largely impractical for use in on-chip routers [30].

NoC arbitration is a well-defined problem suitable for RL. Yin et
al. presented a case study on learning NoC arbitration policy with
RL, where the RL agent predicts a priority score for each packet
based on information including the packet’s local age, payload size,
and traversed hop count [30]. Since the input space of the RL agent
is concise, it is easier to analyze and understand why the agent makes
a certain decision. In this paper, we use a similar setup to evaluate
and analyze the arbitration logic generated by our approach.

B. Reinforcement Learning

Reinforcement learning is an ML technique commonly used for
decision making problems. During training, the agent interacts with
the environment by observing the environment’s states and immediate
rewards, and learns a policy that maximizes the long-term cumulative
reward. A numerical, scalar reward is returned by the environment for
every action performed by the agent, which is then used by the agent
to update its policy. The agent observes abundant data during training
through repeated interaction with the environment. Although it is not
guaranteed to cover all corner cases, the important common cases
will likely be covered by running a sufficient number of episodes.

A popular reinforcement learning algorithm is Q-learning [28].
In Q-learning, the agent tries to learn a Q-value Q(s, a) for each
state-action pair (s, a), where Q(s, a) corresponds to the cumulative
reward of performing action a under state s. Traditionally, when the
state space and action space are limited, a Q-table can be used to
store the learned Q-values. When the state space becomes large,
deep Q-learning [16] provides a more tractable solution, where a
neural network agent is trained to predict the Q-values. While the
neural network agent in deep Q-learning performs a regression task
of predicting the Q-values, it can also be treated as a classifier because
the policy always selects the action with the highest predicted reward
after being deployed. When converting the agent to logic, the more
hardware-friendly view should be selected. In our case study, we



consider the agent as a regressor and use an additional select-max
unit to choose the best action.

C. Tree-Based ML Models

Tree-based ML models approximate the target function by repeat-
edly partitioning the input space. Common tree-based models include
decision trees [3], random forests [9], gradient boosted trees such as
XGBoost [4], and model trees [13]. In this paper we focus on decision
trees and linear model trees, because these models can be efficiently
implemented in hardware with proper regularization and quantization.

During training, a decision tree or linear model tree is gradually
“grown” by repeatedly partitioning the training data. At the root node,
all the training data is analyzed and a certain gain function is com-
puted to find the best split that maximizes the gain. For classification
problems, the difference of gini impurity or mutual information are
common gain functions, while for regression problems the mean-
squared error between the predictions and ground-truth labels can be
used. After the training data is split into two partitions, the same
process is repeated at the children of the root node, where each
child node only considers one partition of the data. This procedure
is applied recursively until the splitting condition is not met. In this
case, the node where the partitioning process terminates is a leaf
node, and a function is used to fit all training data that arrives at this
node. For decision trees this function is constant, while for linear
model trees this function is a linear function with respect to the input
features. As a result, decision trees naturally learn a step function,
while linear model trees learn piecewise linear functions. The linear
models at the leaves of linear model trees can be fit using common
linear regression or classification techniques. In this work we use
LASSO linear regression [25] to minimize the number of features
used at each leaf node.

IV. DISTILLING ARBITRATION LOGIC FROM DATA

In this section, we introduce the details of our logic distillation
process. As shown in Figure 1, starting from running simulation, the
RL agent is trained to perform arbitration. After the agent learns
an effective policy, the corresponding tree model is trained using
the agent’s outputs as labels, and the trained tree model is then
converted to combinational logic. The area, power, and timing of
the generated arbitration logic can be evaluated by ASIC tools, while
the performance is evaluated through software or RTL simulation.

A. Step 1: Learning an Arbitration Policy

Arbitration policies in computer systems can generally be learned
using RL techniques. We use NoC arbitration as a concrete example
to introduce the key steps of feature construction and training. Similar
approaches should apply to other problems in computer systems.

We use DQN to learn an arbitration policy for NoC routers. Fig-
ure 2 shows the architecture of routers in our simulation framework,
where the same agent is shared by all VCs and all routers. Upon
arbitration, each candidate VC queries the agent and the agent returns
a priority score. Similar to [30], the agent uses four features of the
packet to make predictions: 1) local age, i.e., amount of time the
packet spent at the local router where arbitration takes place; 2)
payload size, i.e., size of the packet in bytes; 3) hop count, i.e.,
number of hops the packet has traversed so far; and 4) distance, i.e.,
number of hops between the current and destination nodes. These
features are integers of fixed bit widths, and are normalized to the
range of [0, 1] when training the neural network agent. At every
output port, the priority scores of the VCs that are not requesting
this port will be masked with zeros, and the output port is granted

VC 0

Agent

Local Age
Payload Size

Hop Count
Distance

Priority 
Score

… … …

Select 
Max

Selected 
Input VC

Output Port M

Target Output Port =

M

0

VC N

Agent

Target Output Port =

M

0

Local Age
Payload Size

Hop Count
Distance

Priority 
Score

Fig. 2: Architecture diagram for router arbitration.

to the VC with the highest priority score 1. The agent is given a
reward of one if it correctly selects the globally oldest packet that is
requesting a specific output port, otherwise a reward of zero is given.
While our reward function optimizes for network latency, designers
can emphasize other QoS metrics by tuning the reward function.
For example, assigning rewards based on router buffer occupancy
emphasizes resource utilization. Through RL, the agent will learn
different policies depending on the reward functions, which will result
in different circuit implementations. The collected simulation trace
contains tuples of 〈current state, action, next state, reward〉, and
is added to a large replay memory. The weights of the agent are
periodically updated by training on randomly sampled data from the
replay memory. Please refer to Section V for more details on the
hyperparameters and training dynamics.

B. Step 2: Selecting the Tree Model

As introduced in Section III-C, decision trees and linear model
trees are of particular interest in our approach because they can be
easily converted to logic. However, these two types of models in-
trinsically learn different types of functions: decision trees learn step
functions, while linear model trees learn piecewise linear functions.
Modern neural networks with ReLU activation functions approximate
any arbitrary target function using piecewise linear functions, so
linear model trees might be a better fit for approximating the outputs
of these neural networks. On the other hand, decision trees are more
suitable for very nonlinear target functions.

Because linear model trees learn a linear function at each leaf node,
they can represent more complicated functions than decision trees at
equal depth. As a result, when implementing the same piecewise
linear function, linear model trees will be shallower and can be
implemented in hardware with potentially smaller area budget (more
details in Section V-A).

C. Step 3: Generating Implementable Logic

The logic generation process starts by training a tree model that
approximates the output of the neural network agent. Decision trees
and linear model trees must be trained in a supervised manner. As
a result, a set of inputs must be collected, and the predicted scores
from the neural network agent are used as labels. If the number of

1For multi-priority traffic, the arbiter selects the “best” packet within each
priority level. With additional logic to enforce proper priority ranking, our
methodology can accommodate this scenario without any major changes.



Payload Size < 40

Hop Count < 5

Priority = 2 Priority = 7

Distance < 2

Priority = 9 Priority = 14

<
Payload 

Size
40

<
Distance

2

<
Hop 

Count

5

2 7 9 14

Priority

1

1 1

0

0 0

True

True

True

False

False False

(a) Convert decision tree to logic.

<
Payload 

Size
40

Priority

1 0

(local age >> 2) 
+ 

(hop count << 1) 

(payload size >> 3) 
+ 

(distance << 2) 

Payload Size < 40

Priority = 0.2 x local age + 
1.8 x hop count 

Priority = 0.1 x payload size + 
3.4 x distance

Priority = 0.25 x local age + 
2 x hop count 

Priority = 0.125 x payload size + 
4 x distance

Log quantization

True False

(b) Convert linear model tree to logic.

Fig. 3: Convert tree models to combinational logic (log quantization
is applied to linear model tree).

input features is small, the inputs can be collected by exhaustively
including all possible input combinations. Otherwise, inputs can also
be collected from simulation, which would cover the common cases
but probably not every corner case. For NoC arbitration we choose
the first approach, because the inputs are all within limited ranges,
resulting in around 4,000 possible combinations.

To minimize the hardware overhead, the tree model should take
unnormalized integer features, and output integer priority scores. In
our experiments, we rescale the predicted priority scores from the
neural network agent to the range of [0, 64), and use the rescaled
scores as labels when training the tree models. The outputs of the tree
models are quantized to six-bit integers using linear quantization.

Figure 3 shows how the trained tree models are converted to
combinational arbitration logic. Each non-leaf node is implemented
using a two-input multiplexer and a comparator. For decision trees,
the leaf nodes are constant values. For linear model trees, the linear
models at the leaves require multiplication and addition2. To further

2The predicted values of the linear models might be negative due to the
bias. In this case, we can either use signed comparison at the select-max unit,
or add a constant to all leaves such that the prediction is always non-negative.

Fig. 4: Training dynamics of the MLP agent and comparisons with
different policies — FIFO: local-age-based, RR: round-robin, GA:
global-age-based, MLP: MLP agent.

simplify the logic, we perform log quantization to the weights of
the linear models and quantize them to powers of two. With this
simplification, multiplications can be completely replaced by shift
operations. Log quantization also gives the logic synthesis tool more
opportunity to optimize the addition logic, because in case of right
shifts the valid bit width of the operands will be reduced.

V. CASE STUDY: NOC ARBITRATION POLICY

In this section we present a detailed case study on NoC arbitration
policy. We use the Garnet [1] network model in gem5 [15] as
our simulation platform, and modify Garnet for data collection and
training. The training of RL agents, tree models, and the conversion
to logic are implemented in Python leveraging PyTorch [18], sci-kit
learn [19], and an open-source implementation of model trees [29]. To
evaluate the area and latency, we synthesize the generated arbitration
logic modules using Synopsys Design Compiler, targeting a TSMC
28nm technology library and 1GHz clock frequency. All experiments
are performed on a server with a 64-core 2.80GHz Intel Xeon CPU
and 384GB memory.

Without loss of generality, we constrain the routers in the network
to have one virtual channel per virtual network to speed up training
and facilitate our analysis. As mentioned in Section IV-A, the RL
agent is given a scalar reward of one if it selects the globally oldest
packet. This is equivalent to guiding the agent with a global-age-
based oracle policy, which is unrealistic to implement in hardware.
The RL agent is trained on a 4×4 mesh network with an injection rate
of 0.32 packets/node/cycle under uniform random traffic. We choose
this particular injection rate because it is the network saturation point
(average packet latency increases dramatically after this point) for
global-age-based policy. As shown in Figure 2, all VCs of all routers
in the network share the same neural network agent, which is a multi-
layer perceptron (MLP) with one hidden layer of sixteen neurons.

During training, we launch gem5 ten times, where at each launch
we warm up the network for two million cycles and train for one
million cycles. The agent is trained and updated every 5,000 cycles.
In the rest of this section we will refer to 5,000 cycles as one
episode. An exponential decay of the agent’s exploration rate is used
to encourage the agent to explore different actions at the beginning of
the training, and exploit the learned policy towards the end3. Figure 4

3We use a replay memory with 80,000 entries, and every episode the agent
is trained with 200 random batches of 32 entries sampled from the replay
memory. The agent is trained using the Adam optimizer [12] with an initial
learning rate of 0.001. Exploration rate ε = 0.9e−τ/500, where τ is the
number of trained episodes.



Algorithm 1 LMT Arbitration Policy

Input: local age, payload size, hop count, distance
Output: Priority
if hop count ≤ 5 then

Priority = (local age � 3) + (payload size � 3) + (hop count � 1) +
(distance � 1) + 9
else

Priority = (local age � 2) + (payload size � 1) + (hop count � 2) +
distance - 20
end if

Fig. 5: Arbitration policy learned by linear model tree with a max
depth of one. All weights are quantized to powers of two.

shows the performance of the agent during training, as well as the
comparison with FIFO (prioritizes packets based on their arrival time
to the local router), round-robin (RR), and the oracle global-age-based
(GA) policy. With this specific traffic, the agent steadily converges to
the oracle policy and achieves two orders of magnitude lower average
packet latency than RR and FIFO policies.

A. Area and Performance of the Distilled Arbitration Logic

Table I shows the performance and area comparison of different
arbitration policies. We also include the manually constructed arbitra-
tion logic from [30]4. While being very area-efficient, the manually
constructed logic results in poor performance in our setup. Since the
training traffic is at the saturation point of the global-age-based oracle
policy, this manual policy would quickly degenerate to the FIFO
policy with a large number of buffered packets. A straightforward
way to implement an MLP as combinational logic is to use an array
of multipliers and adders. The “MLP” row of Table I shows the area
of this implementation, where the inputs to the multipliers and adders
are quantized to eight bits. Compared with this implementation,
decision trees can achieve up to 53× area reduction with slight
performance degradation, while linear model trees achieve up to
282× area reduction with marginal performance improvement. When
no regularization is applied to the decision tree, the generated logic
can be considered as a hard-coded, quantized version of the neural
network agent. Compared with this version, the circuits generated
from regularized decision trees and linear model trees can achieve up
to 15× area reduction without significant performance degradation.
The circuit distilled from the linear model tree with a max depth of
one achieves competitive performance with only 40µm2 area. As a
reference, an eight-bit adder consumes ˜17µm2 area under the same
technology node and target frequency. While heavily regularized
decision tree models can be converted to more area-efficient logic,
the performance loss is non-negligible.

The linear model trees generally achieve better average packet
latency than their decision tree counterparts, which indicates that
piecewise linear priority functions are more suitable for NoC arbitra-
tion. Interestingly, the model trees can achieve lower latency than the
original neural network agent. We conjecture that the neural network
agent might have overfit during training, while the conversion to
linear model trees applied a proper regularization effect.

B. Analysis of the Distilled Arbitration Logic

Figure 5 shows the arbitration logic learned by the linear model
tree of depth one. The policy uses hop count as a critical feature
so that packets are treated differently based on their travel distance.
The learned policy generally favors larger packets that have been
buffered locally for a longer time while also considering the topology

4Priority = (local age � 1) + (hop count � 1)

TABLE I: Performance and area comparison of different arbitration
policies — Performance is measured under Uniform Random traffic with
an injection rate of 0.32. DT: decision tree; LMT: linear model tree.

Model Avg. Packet Latency (ps) Area (µm2)

MLP 25659 ± 346 11446

DT (no regularization) 27015 ± 1174 725.8
DT (max depth = 12) 27241 ± 263 684.1
DT (max depth = 8) 25655 ± 597 247.7
DT (max depth = 4) 77833 ± 23931 28.2

LMT (max depth = 4) 23146 ± 222 214.0
LMT (max depth = 3) 24029 ± 171 112.9
LMT (max depth = 2) 24537 ± 494 73.7
LMT (max depth = 1) 23354 ± 373 45.9
LMT (max depth = 0) 24256 ± 518 19.7

FIFO 2113339 ± 50046 0.0
Manually constructed [30] 2056407 ± 54344 8.6

Oracle (global-age) 21492 ± 272 N/A

1. Each agent logic is evaluated for five times. All circuits meet the 1ns timing constraint.
The area of one instance of the agent logic is shown.
2. With no regularization, DT is equivalent to a hard-coded, quantized version of the MLP

agent. LMT with a depth of zero is equivalent to a linear model.
3. The “agent” logic is just a set of wires for FIFO. The global-age-based policy is not

realistic to be implemented in hardware.

Fig. 6: Performance of different policies under Uniform Random
traffic — LMT (depth=1): distilled arbitration logic from linear
model tree with depth one.

information, which is consistent with human intuition. Compared
with the manual policy from [30], our learned policy emphasizes less
on local age and places higher weights on packet size and topology
information. This prevents our policy from quickly degenerating to a
FIFO policy under heavy traffic.

C. Generalization to Different Injection Rates

Figure 6 shows the performance comparison between the baselines,
the oracle policy, the MLP agent, and distilled arbitration logic across
different injection rates under uniform random traffic. The figure only
shows the region around the network saturation point, as arbitration
policy has little impact on NoC performance under low injection
rates. While not shown in the figure, the manual policy from [30]
performs marginally better than FIFO.

When the network is close to saturation, the MLP agent consis-
tently outperforms FIFO and RR while being close to the oracle GA
policy. The performance of the distilled arbitration logic is slightly
better than the MLP agent, which is consistent with our findings in
Section V-A. Under the same traffic pattern, our distilled arbitration
logic is able to generalize in situations of both light and heavy



Fig. 7: Performance of different policies under Transpose traffic
pattern (MLP and LMT are trained under uniform random traffic).

traffic and consistently outperform the baselines. The distilled policy
improves the NoC throughput by 4.9% compared to FIFO.

D. Generalization to Different Traffic Patterns

Figure 7 shows the performance comparison between different
arbitration policies under Transpose traffic pattern, where node (x, y)
only communicates with node (y, x). Again, the manual policy
from [30] (not shown in Figure 7) achieves similar performance
with FIFO. While the MLP agent is trained using uniform random
traffic, it generalizes very well to this new traffic pattern. The
performance of the MLP agent is close to the global-age-based policy
and significantly better than FIFO and round-robin. Linear model
tree with depth of one also performs quite well, but it does have a
noticeable performance gap with the global-age-based policy and the
MLP agent. The reason is that the distilled arbitration logic is only
an approximation of the MLP agent. While this inaccuracy results
in a slight performance improvement under uniform random traffic,
the Transpose traffic pattern requires a more sophisticated priority
function because it has more packets with larger hop count. With
a linear model tree of depth four, the generated arbitration logic
performs nearly identical to the MLP agent.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel methodology of automatically distilling
arbitration logic from simulation data, and a detailed case study on
NoC arbitration. Our case study shows that by leveraging tree-based
models as a bridge, deep learning models can be converted to efficient
combinational logic. The distilled arbitration logic can achieve sig-
nificant area savings compared with a straightforward datapath for
computing neural network outputs. Regularization schemes can be
applied to the tree models as a trade-off between model accuracy
and area consumption.

In this work we illustrated the effectiveness of our methodology
on a small network with synthetic traffic patterns as a proof-of-
concept. For future work, we plan to further evaluate our technique
on larger and more realistic networks. Such networks may provide
more generic features about input packets, which can be effectively
utilized by the RL agent and tree-based models. While the learned
arbitration logic can accommodate a different traffic pattern as shown
in Section V-D, it is not guaranteed that an RL agent can generalize
well to all unseen circumstances. As a result, a promising future
direction is to design an efficient reconfigurable implementation of the
RL agent so that the arbitration logic can be dynamically reconfigured
at run time to adapt to different traffic patterns.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback on the earlier
version of this manuscript. This research was supported in part by
NSF Award #1909661.

REFERENCES

[1] N. Agarwal et al. GARNET: A Detailed On-Chip Network Model inside
a Full-System Simulator. ISPASS, 2009.

[2] E. Bhatia et al. Perceptron-Based Prefetch Filtering. ISCA, 2019.
[3] L. Breiman et al. Classification and Regression Trees. CRC press, 1984.
[4] T. Chen and C. Guestrin. Xgboost: A Scalable Tree Boosting System.

KDD, 2016.
[5] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural

Networks with Weights and Activations Constrained to +1 or -1. arXiv
preprint arXiv:1602.02830, 2016.

[6] M. Ebrahimi et al. HARAQ: Congestion-Aware Learning Model for
Highly Adaptive Routing Algorithm in On-Chip Networks. NOCS, 2012.

[7] E. Garza and otheres. Bit-Level Perceptron Prediction for Indirect
Branches. ISCA, 2019.

[8] M. Hashemi et al. Learning Memory Access Patterns. arXiv preprint
arXiv:1803.02329, 2018.

[9] T. K. Ho. The Random Subspace Method for Constructing Decision
Forests. IEEE TPAMI, 20(8):832–844, 1998.

[10] E. Ipek et al. Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach. ISCA, 2008.

[11] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with Perceptrons.
HPCA, 2001.

[12] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980, 2014.

[13] N. Landwehr et al. Logistic Model Trees. Machine Learning, 59(1-
2):161–205, 2005.

[14] M. M. o. Lee. Probabilistic Distance-Based Arbitration: Providing
Equality of Service for Many-Core CMPs. 2010.

[15] J. Lowe-Power et al. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152, 2020.

[16] V. Mnih et al. Playing Atari with Deep Reinforcement Learning. arXiv
preprint arXiv:1312.5602, 2013.

[17] J. Mukundan and J. F. Martinez. MORSE: Multi-Objective Reconfig-
urable Self-Optimizing Memory Scheduler. HPCA, 2012.

[18] A. Paszke et al. Pytorch: An Imperative Style, High-Performance Deep
Learning Library. NeurIPS, 2019.

[19] F. Pedregosa et al. Scikit-Learn: Machine Learning in Python. JMLR,
12:2825–2830, 2011.

[20] L. Peled et al. Semantic Locality and Context-Based Prefetching using
Reinforcement Learning. ISCA, 2015.

[21] M. Poremba et al. There and Back Again: Optimizing the Interconnect
in Networks of Memory Cubes. ISCA, 2017.

[22] S. Sethumurugan, J. Yin, and J. Sartori. Designing a Cost-Effective
Cache Replacement Policy using Machine Learning. HPCA, 2021.

[23] Z. o. Shi. Applying Deep Learning to the Cache Replacement Problem.
MICRO, 2019.

[24] E. Teran et al. Perceptron Learning for Reuse Prediction. MICRO, 2016.
[25] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal

of the Royal Statistical Society: Series B (Methodological), 58(1):267–
288, 1996.

[26] Y. Umuroglu et al. LogicNets: Co-Designed Neural Networks
and Circuits for Extreme-Throughput Applications. arXiv preprint
arXiv:2004.03021, 2020.

[27] E. Wang et al. LUTNet: Rethinking Inference in FPGA Soft Logic.
FCCM, 2019.

[28] C. J. Watkins and P. Dayan. Q-Learning. Machine Learning, 8(3-4):279–
292, 1992.

[29] A. Wong. Deep & Classical Reinforcement Learning + Machine
Learning Examples in Python. https://github.com/ankonzoid/LearningX,
2020.

[30] J. Yin et al. Experiences with ML-Driven Design: A NoC Case Study.
HPCA, 2020.

[31] Y. Zeng and X. Guo. Long Short Term Memory Based Hardware
Prefetcher: A Case Study. MemSys, 2017.

[32] H. Zheng and A. Louri. An Energy-Efficient Network-On-Chip Design
using Reinforcement Learning. DAC, 2019.


