
Experiences with ML-Driven Design: A NoC Case Study
Jieming Yin* Subhash Sethumurugan** Yasuko Eckert* Chintan Patel* Alan Smith*

Eric Morton* Mark Oskin*† Natalie Enright Jerger‡ Gabriel H. Loh*
*Advanced Micro Devices, Inc.

{first.last}@amd.com
**University of Minnesota, Twin Cities

sethu018@umn.edu

†University of Washington
oskin@cs.washington.edu

‡University of Toronto
enright@ece.utoronto.ca

ABSTRACT
There has been a lot of recent interest in applying machine
learning (ML) to the design of systems, which purports to
aid human experts in extracting new insights leading to better
systems. In this work, we share our experiences with applying
ML to improve one aspect of networks-on-chips (NoC) to
uncover new ideas and approaches, which eventually led us
to a new arbitration scheme that is effective for NoCs under
heavy contention. However, a significant amount of human
effort and creativity was still needed to optimize just one
aspect (arbitration) of what is only one component (the NoC)
of the overall processor. This leads us to conclude that much
work (and opportunity!) remains to be done in the area of
ML-driven architecture design.

1. INTRODUCTION
In recent years, our community has shown increasing inter-

est in applying Machine learning (ML) to improve computer
system designs. There are now designated conferences and
workshops such as MLSys and AIDArch organized around
such ML-driven approaches. ML can potentially augment
human expert intelligence to extract richer insights, find more
effective optimizations, and provide better decision making
for complex systems. In the computer-architecture field alone,
there is already some work utilizing ML to improve branch
predictors [1], memory controllers [2], reuse prediction [3],
prefetchers [4], and dynamic voltage and frequency scaling
(DVFS) management for NoCs [5, 6].

Given the excitement around ML for system design, we
wanted to try wielding this “hammer” for ourselves, and we
set off in search for some “nails.” There are many aspects
of a processor that could potentially benefit from ML-aided
design. We decided to consider NoC arbitration policies as a
test case because it is a sufficiently simple-to-define problem
where we hoped applying ML would be tractable, but arbi-
tration still plays a critical role in NoC performance. Even
restricting our attention to just one specific aspect (arbitration)
of only one component (the NoC) of the processor, we still
found that there were several areas where ML falls short of
being a panacea for all our architecture challenges. That said,
despite these shortcomings, we did find that ML was useful
and guided us to new and better solutions. The objective of
this paper is to share with the community our experiences
with ML-guided design, both to encourage continued research
and development into this promising approach, as well as to
draw attention to points along the journey where ML cannot
(yet) replace human creativity and innovation.

From our experience, ML was a useful tool to process a
large amount of data. We collected the NoC router states over
a large number of simulated cycles. This includes states on
the multiple input buffers, where requests are coming from,
where they are headed to, the message types/classes, and
more. Given the millions of cycles of simulation, it is imprac-
tical for a human to manually dig through so much data with
any hope of extracting useful patterns or identifying interest-
ing behaviors. For our chosen problem of NoC arbitration,
we found that reinforcement learning (RL) was a good match
to our problem definition. We could let the RL agent loose on
our problem, and (hopefully) observe what new algorithms
and strategies that it comes up with to improve NoC arbitra-
tion. The good news is that, with some effort, we were able
to gain some useful and non-obvious (at least to us) insights
that led to an improved NoC arbiter.

Also from our experience, ML for system design (at least
in its current state) still leaves much to be desired in a few
areas. The first is in hyperparameter tuning to get the RL
agent to perform well. While this is a well-known challenge
with ML in general, it still represents required human effort.
The second area is the interpretability of neural networks
(NN). While our trained RL agent was able to improve NoC
arbitration, it required substantial human effort to extract
even just some hints as to why/when/how the RL agent was
behaving so. ML interpretability remains a large and active
research area in the broader ML community [7], and contin-
ued advances are needed to maximize the benefit and impact
of ML-aided computer architecture design.

The third area where we experienced a “gap” in ML-aided
design methodology is in going from the neural network to a
practical solution. In many other areas where ML is being suc-
cessfully applied (e.g., image recognition), the complex deep
neural networks can be executed with software implementa-
tions. However, for the vast majority of potential computer
architecture applications, decisions need to be made on the or-
der of at most a few clock cycles. In such timing-constrained
(and silicon area-constrained) environments, even executing
a single layer of a neural network is unlikely to be feasible.
One can draw analogies to the pioneering work on perceptron
branch predictors [1] where an ML technique provided the
valuable insight that very long branch histories provide criti-
cal information for improving prediction accuracy, but then it
took over an additional decade of creative work by the com-
munity to convert that insight into the implementable “neural
inspired” predictors that we see today [8]. In our work, we
identified some useful behaviors from our trained RL agent,

637

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00058



Environment Agent

State s(t)

Reward r(t)

Action a(t)

Figure 1: Conceptual diagram of reinforcement learning.

but we were then left on our own to derive something that
captured the essence of the neural network’s behaviors while
being suitably simple for industrial application.

The goals of this work are neither to over-hype ML for
computer architecture design, nor to condemn the overall
approach. We do see a lot of promise in further research in
these directions, but we also want the community to approach
this type of work with “eyes wide open” about how ML
may augment, but not replace, the role of human computer
architects.

2. BACKGROUND
In this section, we provide a brief background on NoC ar-

bitration and reinforcement learning. We refer the interested
reader to other sources [9, 10, 11, 12] for more details.

2.1 NoC Arbitration
A NoC consists of interconnected routers that link together

numerous on-chip components (e.g., cores, caches, memory
controllers). Typically, a router has multiple input and out-
put ports and within each input port, there could be one or
more input buffers and support for virtual channels (VCs).
Arbitration is required when messages from multiple input
buffers or VCs compete for the same resource such as output
ports and output VCs. Arbitration policies are critical to NoC
latency, throughput, and fairness. Nevertheless, designing an
arbitration policy can be challenging. First, a local decision
could have a delayed effect: a seemingly reasonable decision
made in one cycle could result in congestion in downstream
routers many cycles later. Second, it is difficult to associate
overall application performance with any one specific arbitra-
tion decision. Third, routes in a NoC overlap and intersect. A
single message route involves multiple arbitration decisions.
Similarly, a single arbitration decision can affect multiple
routes.

Researchers have explored a variety of arbitration poli-
cies. A traditional round-robin policy provides a high degree
of local fairness by treating each input port equally. Only
considering local fairness at each router, however, can lead
to poor global equality of service [13]. Approximated age-
based packet arbitration [14] provides equality of service, but
has limitations regarding fairness of bandwidth allocation.
Fair Queuing [15] and Virtual Clock [16] improve fairness
and network utilization by maintaining per-flow state and
queues, but are costly to implement. Link bandwidth alloca-
tion becomes increasingly unfair as a message traverses more
routers. Global-age arbitration is considered one of the best
policies and has been effectively implemented in off-chip
routers, but its hardware cost is largely impractical for use in
on-chip routers [17].

2.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning tech-
nique used for decision-making problems. In RL, an agent
attempts to learn a policy for navigating an environment that
leads to maximum long-term reward. During training, the
environment returns a numerical reward for each action it
takes (Fig. 1). The agent then uses this reward to train itself.

RL differs from supervised learning in that correctly la-
beled data are not required. Instead, RL uses a reward to
adjust behavior. As we demonstrate in Section 6.3, different
reward functions lead to different arbiter policies with varying
degrees of effectiveness. RL also differs from unsupervised
learning in that RL learns a classifier, while unsupervised
learning typically learns a classification. The distinction is
subtle but important. The result of RL is an algorithm for
making a decision on new inputs. With unsupervised learn-
ing, new inputs are either only approximately classified or
require a learning update phase.

One well-known branch of RL is value-based learning. For
example, with Q-learning [18], a Q-value represents the qual-
ity of taking a particular action a when the environment is in
state s. In its simplest form, for each state s, there are several
possible actions to take. The environment can either choose
an action a that has the highest (currently estimated) Q-value
among all possible actions or take a random action to explore
new trajectories. After taking the action, the environment
transitions to a new state s′ and provides a reward r. With
the tuple 〈s,a,r,s′〉, the algorithm uses the Bellman Equation
as an iterative update to maximize the expected cumulative
reward achievable from a given state-action pair:

Q(s,a)← Q(s,a)+α [r+ γmaxa′Q(s′,a′)−Q(s,a)]
where α is a learning rate and γ is a discounting factor. To
perform well in the long term, both the immediate reward
and future rewards need to be accounted for. γ determines
how much weight is given to the future rewards.

Traditional Q-learning uses a Q-function. It returns the
action with the highest Q-value given the environment’s state.
A straightforward approach to implementing this function is
to use a table lookup. In RL this table is referred to as the Q-
table and it stores the Q-value for each state-action pair. For
many real-world problems, however, the state-action space
can be extremely large. For example, when using RL to play
video games, a Q-value for each image frame and all possible
actions must be tracked, requiring an impractical amount
of storage space [12]. For the NoC arbitration problem in
this paper, a vector of hundreds of numbers is required to
represent a state (more details in Section 4), and each element
in the vector can have over a dozen values. The Q-table
approach is therefore not practical for such a large state space.
Deep Q-learning (DQL) uses a neural network to approximate
the Q-function [12]. Given a state s, the neural network can
output an approximated Q-value for each possible action. We
use the DQL technique with a multi-layer perceptron neural
network to approximate the Q-function.

3. HIGH-LEVEL OVERVIEW
An important step in architecture design is exploring alter-

natives and optimizing the preferred approaches. Architects
typically use high-level simulation along with a combination
of intuition and brute force to explore the design space. ML
(and RL in particular) is a potentially powerful tool to ac-

638



Agent Neural Network

Q-value for In1 Q-value for In2

In1 msg features

Payload 
size

Local
age Dist. Hop 

count

In2 msg features

Payload 
size

Local
age Dist. Hop 

count

In 1

In 2
Out

Arb

Figure 2: Conceptual diagram of the proposed offline RL
model for NoC arbitration.

celerate this process. To use RL, designers replace portions
of their simulator with RL algorithms. While typical fea-
ture engineering and hyperparameter tuning are still required,
little human interaction is needed once the RL algorithm
starts exploration. However, human involvement is required
after training. The trained models might provide good perfor-
mance, but the resulting neural network could be infeasible
to implement in hardware. In this case, the search is on for
humans to understand the behavior of the model and learn
from the machine. Due to the usual architectural constraints
(area, delay, energy, etc.), it might not be feasible to copy the
exact behavior of the RL algorithm. Designers must fall back
on their domain expertise and intuition to evaluate different
practical implementations that are inspired by RL.

Traditional ML algorithms rely on human experts to pro-
vide meaningful input features (feature engineering), high
quality training data, hyperparameter tuning, and manual
construction of the NN architecture. Using ML to discover
new features without any human intervention might be possi-
ble in the future with substantial advancements in NN inter-
pretability. Given the state-of-the-art for NN interpretability,
designers must still manually interpret NN results.

3.1 Application to NoC Arbitration
In this work, we apply RL to NoC arbitration in the follow-

ing way: every cycle, each router interacts with an agent by
sending its own router state(s). The agent then evaluates the
router states and computes Q-values for all possible actions.
Routers use these Q-values to select input buffers and grant
output ports. Meanwhile, a reward is calculated and used by
the agent for further training. In this section, we demonstrate
the overall concept using a simple setup with synthetic traffic
before diving into a detailed exploration and implementation
in Section 4.

3.1.1 The RL Framework
Fig. 2 shows how we apply RL to NoC arbitration. We

implement a single Agent shared by all routers. Routers query
this Agent by sending vectors that represent their current
internal state. The Agent uses a neural network to generate Q-
values that are sent back to the router where final arbitration
decisions are made.
State Vector: Routers in our NoC query the Agent for Q-

<s, a, s’, r>

Replay memory

r0 r1

r2 r3

Agent

1

2 3
π

4

π π

π π

Figure 3: Agent training process.

values to make one arbitration decision per output port. For
each arbitration, the router gathers internal state relevant to
that output port into a state vector. A state vector consists of
a list of features from all messages that compete for the same
output port. In Fig. 2, both In_1 and In_2 have a message
requesting Out, where each message has four features (see
Table 2 for more details on the features) for a total state vector
with eight entries denoted by the eight downward-pointing
arrows in this example.
Agent: Based on the state vector provided by the router, the
Agent computes Q-values for each input port. The Q-value
should indicate the expected quality or effectiveness for se-
lecting a message from that port. Every cycle, each output
port of each router queries the same agent independently.
Note that the same neural-network weights are used to cal-
culate Q-values across all output ports and routers. This is
conceptually similar to how a conventional router applies the
same arbitration heuristic (e.g., round-robin) to all routers
and all ports. However, this is not fundamental; designers can
use multiple agents for training, where each agent is trained
with only a fixed subset of routers.
Reward: After each arbitration, a reward is generated and
sent to the Agent. The reward is a numerical score that should
be correlated with how effective an arbitration decision was.
The Q-learning algorithm is designed to maximize the long-
term (accumulated) reward. In the context of NoC arbitration,
several different metrics are possible for defining a reward;
examples include message latency, network throughput, and
fairness. In this example, we use the global age of the mes-
sage to compute a reward: we provide a fixed positive reward
for selecting the oldest message and zero otherwise. While
global age is effective, it is not practical to implement in real
hardware NoCs [17], but recall that it does not have to be.
We use global age to drive our exploration process to identify
more practical features that hopefully can provide similar
benefits. Section 6.3 evaluates performance sensitivity to
different reward functions.

3.1.2 Agent Training
Fig. 3 shows the training process for a small four-router

network. After each arbitration decision, the router generates
and stores a tuple of 〈state, action, next state, reward〉 in a
replay memory 1 . The replay memory is a circular buffer
used for improving the quality of training. When training the
model 2 , instead of using the most recent record, a batch of
records is randomly sampled from the replay memory. This

639



Core N S W E

local age

hop count
distance

payload size

Figure 4: Average weight heatmap of hidden-layer neurons.
Each row corresponds to a feature, and each column corre-
sponds to an input buffer.

technique is called experience replay [19]. Depending on the
specific application of RL to computer systems design, the
exact set of techniques to train the neural network may vary.
In this work, experience replay along with the utilization of a
second target neural network [12] were effective in stabilizing
the training process. Through training, the agent improves its
arbitration policy π 3 , which is then used by all routers for
making subsequent arbitration decisions 4 .

3.1.3 Drawing Insights from the Neural Network
Although the agent might learn a promising policy that

leads to significant performance improvement, the hardware
and power costs of implementing a NN could be prohibitive
for NoCs. Furthermore, performing inference for every ar-
bitration decision at each router would increase the router’s
critical path and inadvertently degrade system performance.
Therefore, rather than building a neural network directly in
hardware, designers need to leverage the NN-derived insights
to find more practical arbiter designs.

After training stabilizes, we analyze the Agent’s neural
network to try to understand its behavior. In general, this
process can be very challenging, and neural network “inter-
pretability” remains an open research problem in the machine
learning community [7]. In this work, because the neural
network architecture is shallow (one hidden layer), we were
able (with some effort) to directly interpret and derive some
insights from the neural network’s weights. More discussion
of this interpretation is provided in the next section, along
with a concrete example.

3.2 Synthetic Traffic Example
This section provides a quick example using a simple 4×4

mesh network; we present a more detailed and realistic explo-
ration in Section 4. Each router has five input ports (N/S/W/E,
plus one for a core to inject/eject network messages), where
each input port has three virtual channels. For this example,
we simply use a uniform random synthetic traffic pattern.
Agent Neural Network Architecture: As is typical of ML,
some effort is needed to find an effective neural network
organization. We evaluated numerous neural network ar-
chitectures and performed hyperparameter tuning (number
of hidden layers, hidden layer widths, activation functions,
learning rate, batch size, discount factor, and exploration rate).
The resulting neural network is a multi-layer perceptron with
one hidden layer.
Analysis of the Agent Neural Network: To understand the
agent neural network’s behavior, we used a visualization of

0

0.5

1

1.5

2

4x4 Mesh 8x8 Mesh

No
rm

al
ize

d 
Av

g 
La

te
nc

y

FIFO
RL-inspired
NN
Global-age

21.8

Figure 5: Average message latency comparison for FIFO,
our proposed (RL-inspired), agent neural network (NN), and
global-age policies. Results are normalized to Global-age.

the neural network’s weights. The agent neural network has
60 input neurons (5 ports×3 buffers/port×4 features/buffer)
and one hidden layer with 15 neurons. Fig. 4 shows a heatmap
where each pixel is the average of the absolute value of a
specific weight across all 15 neurons in the hidden layer. A
darker pixel has a higher magnitude of weight than a lighter
pixel. Each row in the figure corresponds to a feature, and
each column corresponds to an input buffer.

Fig. 4 suggests that the hidden layer neurons tend to make
the most use of the local age and hop count features. Payload
size also factors into some neurons, and distance is largely
ignored. Reflecting upon what the RL process has come up
with, local age makes sense in that the longer a request has
been waiting at a router, the more likely it is that the request
is blocking other traffic or holding on to critical resources
(e.g., MSHRs at the originating core). Hop count also makes
sense in that requests with the largest hop counts are the ones
that have traveled the furthest in the network and therefore
are already facing longer latencies. Note that this analysis
provides suggestions for promising features, but it is still
up to the human designer to convert these observations into
practical arbitration policies.
Example Arbitration Policy: Based on the observations
made above, we demonstrate a simple example arbitration
policy. Our proposed policy consists of two steps: compute
the priority level for each candidate input buffer and then
select the input buffer with the highest priority level. With a
4×4 mesh, we compute priority as follows:

Priority_level = local_age� 1+hop_count� 1
where local_age is a 5-bit value and hop_count is a 3-bit
value associated with each input message. Upon arrival
at a router, local_age is initialized to zero and then incre-
mented by one on each subsequent cycle, saturating at 31.
The hop_count feature is set to zero when a message is first
injected into the NoC, and then incremented each time the
request is forwarded to another router. In contrast with a full
neural network that can require thousands of addition and
multiplication operations, our example priority computation
is simple enough (constant shifts and a single low-bit-width
addition) for direct hardware implementation. While this
example policy is simple, we emphasize that the current state
of the art in ML does not provide an automatic method or pro-
cess to go from a trained NN to an implementable algorithm
such as this; this methodological gap in ML-driven design
must still be bridged by human effort.
Results: Fig. 5 (left) compares the performance among four
policies: FIFO (prioritizes messages based on their arrival

640



time to the local router), our proposed arbitration policy (“RL-
inspired”), an impractical RL-trained neural-network (NN),
and global-age policies for the 4×4 mesh NoC. FIFO policy
is simple to implement in hardware unlike global age, but still
captures some notion of age (local age). The results show that
our proposed policy can significantly reduce message latency
compared to the FIFO policy and cover a significant portion
of the performance gap between FIFO and the impractical
neural-network and global-age policies. Note that these re-
sults are specific to the uniform random synthetic traffic, and
other traffic patterns may require different policies.1

8×8 Mesh Network: We also repeated this exercise for an
8×8 mesh network. In this case, hop count carried more
weight than local age due to the longer routes through the
larger network. We conjecture that in a larger network, global
age can be better approximated through hop count instead of
local age. For this network, we compute priority as:

Priority_level = local_age+hop_count� 2
which reflects the larger influence of hop_count. Fig. 5 (right)
shows the performance of the different arbitration policies
for this larger network. The performance of FIFO arbitration
is significantly worse, as the difference between a request’s
local age at a router and its global age since initially entering
the NoC can diverge drastically. Both the implementable
RL-inspired and NN policies perform relatively close to the
global-age policy.

These examples illustrate that an ML-approach can pro-
vide useful guidance, but the human architect must still follow
through to conceive practical circuits that efficiently imple-
ment the essential learned behaviors from the neural network.

4. IN-DEPTH DESIGN EXPLORATION
In this section, we look at more realistic application traffic

and more complex networks that interconnect dozens of CPU
and GPU components. We begin by describing the chip
architecture and then explain the workloads. After that, we
return to RL in an attempt to develop an efficient NoC arbiter
for this more complex chip architecture and our application-
driven workloads.

4.1 Baseline Architecture
We use an APU simulation platform consisting of gem5 [20]

and a modified version of the AMD GPU model [21] for eval-
uation. Fig. 6a shows our baseline chip architecture that
contains both CPU and GPU clusters. The CPU cluster con-
sists of CPU cores, private L1 and L2 caches, and a last-
level-cache (LLC). The GPU cluster consists of compute
units (CUs) with private L1 data caches. GPU L1 instruc-
tion caches are shared by every four CUs. The GPU uses a
banked unified L2 cache. Individual coherence directories
are connected to the memory controllers for off-chip memory
accesses. These directories are responsible for keeping the
CPU LLC and the GPU L2 cache coherent. CPU caches are
write-back and are kept coherent through a MOESI direc-
tory protocol. GPU caches are write-through and write-no-
allocate. GPU L1 caches are kept coherent by writing through

1Additional performance could potentially be extracted by further tuning our RL-
inspired algorithm (e.g., by prioritizing new requests from the “core” input as sug-
gested by Fig. 4), but we do not explore this here as this current example is merely for
illustrative purposes.

CPU Cluster

Interconnect Network

GPU Cluster

Compute Units L1D L1I

GPU L2

Mem

Dir

Mem

Dir

Mem

Dir

Mem

Dir
…

CPU LLC
Core L1/L2

(a) Baseline system overview.

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CU/L1D

Dir

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

Dir

CPU CPU LLC CPU CPU LLC

CPU CPU LLC CPU CPU LLC

(b) Baseline topology.

Figure 6: Baseline system.

dirty data and invalidating the caches at kernel launch.
Fig. 6b shows the baseline NoC topology. The GPU cluster

has 64 CUs connected by an 8×8 mesh network. 16 GPU L1
instruction caches are located in the center of the mesh. The
16 coherence directories are placed along the left and right
edges, where each directory is also connected to a correspond-
ing memory controller and associated DRAM channel (not
pictured). The GPU L2 cache banks are address interleaved.
Each quadrant of the mesh is augmented with two additional
nodes for a CPU cluster. One node is connected to the CPU
including its L1 and L2 caches, and the other is connected to
the CPU LLC. This system requires seven network classes
for coherence, and therefore, each router has seven virtual
channels per input port. Request and coherence messages are
1 flit in length, and data messages are 5 flits (1 header, 4 data).
We use Garnet [22] to model the NoC and implement the RL
framework inside Garnet.

4.2 Workloads
We use the APU-SynFull methodology in this work to re-

duce simulation time while still driving our experiments with
realistic application-based coherence and memory traffic [23].
APU-SynFull is based on SynFull [24], which analyzes NoC
traffic traces from a detailed cycle-level simulation of appli-
cation execution and creates stochastic Markov-model-based
traffic generators. The generated traces are statistically sim-
ilar to the original applications in terms of program phases,
CPU vs. GPU traffic, distributions of message sources and
destinations, per-node injection rates, etc. More importantly,
APU-SynFull captures memory instruction dependencies of
the original program, which allows us to evaluate how arbi-
tration decisions impact total program execution time.

641



Benchmark Suite Applications
AMD SDK [25] dct, histogram, matrixmul, reduction

OpenDwarfs [26] SpMV

Rodinia [27] bfs, hotspot

HPC proxy app [28] CoMD, miniFE

Table 1: List of traffic-intensive workloads.

We evaluate the applications listed in Table 1 from the
AMD SDK [25], OpenDwarfs [26], Rodinia [27], and ECP
Proxy Apps [28] suites. We focus on traffic-intensive appli-
cations on which arbitration matters, but we also evaluated
other workloads and verified that nothing we do inadvertently
hurts performance in those cases. We first execute each appli-
cation in the gem5 simulator and collect NoC traffic traces.
Then we use APU-SynFull to analyze the trace and generate
a model file for each benchmark. Traces are collected from
a smaller system with 16 CUs/L1Ds, 4 L1Is, 8 L2s, and 16
coherence directories. We simulate a multi-program scenario
by running four independent copies of an application (as cod-
ified by its model file) in the baseline 64-CU system, one in
each quadrant (marked with the dashed line in Fig. 6b). The
GPU L2 cache banks are organized so that they are private
to each quadrant, therefore cache coherence traffic does not
cross the quadrant boundaries. The memory controllers are
shared by all quadrants and therefore CPU LLC and GPU L2
misses can cross quadrant boundaries.

Because each of the four applications are executed inde-
pendently, each copy may have a different completion time.
A quadrant becomes idle when the launched application fin-
ishes. We define the average program execution time as
the average completion time across all four instances of the
application, and tail program execution time as the comple-
tion time of the slowest instance. We also evaluate scenarios
consisting of mixes of different applications. To fully train
the agent, we execute the same set of model files repeatedly
until the training converges.

4.3 Message Features
For this in-depth design, we consider the complete set of

message features listed in Table 2. Note that these features
are a combination of general NoC features (e.g., hop count)
and ones specific to the NoC of a chip multiprocessor (e.g.,
cache coherence request type). These features should be
meaningful for making arbitration decisions. For example, lo-
cal age and hop count are related to message latency. In-flight
messages and inter-arrival time are related to NoC traffic
load. Payload size, distance, message type, and destination
type are message properties that may correlate to underlying
application behaviors and patterns. Note that both message
type and destination type are one-hot encoded features. As a
result, each message needs 12 elements (one each for the first
six features, and then three each for the last two) to represent
all of its features.2 Each feature is normalized such that all
values in the state vector are between 0.0 and 1.0 (see Sec-
tion 6.2 for more discussion on feature engineering). All of
this feature selection and engineering represent another point
in the process that requires human input.

4.4 Router State Vector
2We emphasize that this work does not aim to identify new input features, but rather
which features or higher-order features (i.e., combinations thereof) are the most effec-
tive.

Algorithm 1 Router Decision Making Algorithm

1: Q: Q-value vector
2: P: A set of input requesters that request the same output
3: r: An input requester (buffer)
4: p: The input port a requester belongs to
5: for each output port do
6: Q← get_Q_value()
7: R← get_input_requester()
8: if (output port not busy) then
9: while (R �= /0) do

10: select r =
{

random requester (with probability ε)
requester with the largest Q-value

11: p← get_input_port(r)
12: if (p not granted) then
13: Grant output port to input buffer r
14: Record granted input port p
15: break
16: else
17: Remove r from R, and set the corresponding Q-value to 0 in Q
18: end if
19: end while
20: end if
21: end for

In Section 3.1.1, we introduced the router state vector and
described how it is used by the Agent to compute Q-values.
A state vector consists of a list of features from all messages
that compete for the same output port. Consider a router with
n input ports, m output ports, k input buffers per port (used
for multiple message classes, virtual channels, etc.), and p
features per message. Each router generates m separate state
vectors of length n×k× p each, as each of the m output ports
will be independently arbitrated.

The number of ports per router can be different, depending
on the location of the routers. For example, corner routers
have fewer ports than center routers in a 2D mesh. Because all
routers share the same agent in our present implementation,
the input-layer width of the agent neural network must be
equal to the width of the largest router’s state vector. To
guarantee that all state vectors have the same width, we align
the vector based on the input ports, and zero out any empty
and/or non-existent ports for the routers with fewer ports.

4.5 Decision Making
We only consider router designs where each message re-

quests a single output port, and the arbitration decision for
each output port is independent of the others. Because of this,
depending on the input status and output port availability, a
router queries the Agent up to m times every cycle, where
m is the number of output ports. If an output port is not
requested or not available (e.g., in the middle of transmitting
a multi-flit message), the router does not issue a query for
that particular output. If an output port is requested by only
one input message, the output port is directly granted to that
input buffer without querying the agent.

As with our simplified network in Section 3, the Agent
computes the Q-value score for each potential input port,
from which an output port could route a message. We call
this collection of Q-values the Q-value vector. The Q-value
vector is sent back to the router, which ultimately makes
an arbitration decision. The router grants the output port
to the input buffer that has the highest Q-value, with the
following exceptions: (1) The highest Q-value element might
correspond to an empty or irrelevant buffer, especially during

642



Feature Name Description
Payload size size of the message (in flits)

Local age number of network cycles spent from the time at which the message arrived at the current router

Distance number of hops from the message’s source to destination routers

Hop count number of hops the message has traversed so far

In-flight messages number of outstanding requests from the message’s source router

Inter-arrival time number of network cycles between the arrival of two consecutive messages at the same buffer

Message type type of the message: request, response, or coherence

Destination type type of the destination node: core, cache, or memory

Table 2: Message features considered in this work.

Core Mem N S W E
payload size

local age
distance

hop count
# in-flight msg

inter-arrival time
message type

(1-hot encoded)

destination type
(1-hot encoded)

Figure 7: Average weight heatmap of the hidden layer for
Bfs’s agent neural network. Each row corresponds to a fea-
ture, and each column corresponds to an input buffer.

the initial training phase; (2) An input port can route at most
one message per cycle; therefore, no more than one output
port should be granted to the same input port in the same
cycle. In these two cases, the router selects the next eligible
input buffer with the highest Q-value; and (3) The Agent must
explore its Environment to cover as much decision space as
possible. Hence, with a probability ε , the router randomly
selects a candidate input buffer. Algorithm 1 presents the
pseudocode for the router’s arbitration decision making.

4.6 Analysis of the Neural Network
After extensive exploration of neural network architec-

tures and hyperparameter tuning, we found that many models
showed similar prediction accuracy. Considering the training
time and interpretability, we chose the simplest neural net-
work (one input layer, one hidden layer, and one output layer)
among the best-performing models. The largest router in the
target NoC has 6 input ports (core, memory, north, south,
west, and east), each with 7 buffers, and each message needs
12 numbers to represent all of its features. Therefore, the
agent neural network has 6×7×12 = 504 input neurons. Both
hidden and output layers have 42 neurons, and their activation
functions are Sigmoid and ReLU, respectively. The learning
rate, discount factor, and exploration rate ε are 0.001, 0.9,
and 0.001, respectively. We train the Agent every cycle using
a batch of two records randomly sampled from a 4000-entry
replay memory.

We use a similar manual NN visualization process as be-
fore. For illustrative purposes, we derive the arbitration pol-
icy based on the training of a single application (i.e., Bfs in
Fig. 7), but our results show that the derived policy general-
izes well to other applications. Similar to before, the local
age and hop count features are heavily used by the neural
network. However, there is additional variation and sensitiv-

ity across message classes and input ports. Certain message
classes (indicated by the different columns within an input
port in the heatmap) have more significant weights than oth-
ers, which suggests that properly handling these messages
may have a larger impact on the performance of the arbiter.
Unlike local age and hop count, which can be used to approx-
imate the global age of a single message, the message class
feature tells us among all messages, which types of message
are likely to have larger global age. The message classes
with more significant weights in our system send GPU co-
herence, memory response, and GPU L2 response messages,
which correspond to the 4th, 5th, and last columns/pixels
for each input port. Intuitively, prioritizing coherence and
response messages allows the compute units to make bet-
ter forward progress. As a result, when designing the final
arbitration policy, we would likely want to prioritize mes-
sages from these classes, but we also note that the degree
of prioritization varies by input port. The NN analysis not
only identifies important features, but it also illuminates the
context for when those features matter. As another example,
we also observed that hop count shows positive weights on
North and South ports, but negative on West and East ports.
We analyzed the weights in the output layer and discovered
that they are mostly positive, so the negative weights in the
hidden layer indicate that a smaller input value is preferred.
As a result, in our final arbitration policy (next subsection),
we prioritize messages with larger hop counts for North and
South ports, while prioritizing smaller hop counts for West
and East ports. These compound, multi-feature prioritizations
are effectively higher-order features that the NN has learned.
These more complex relationships between input features and
port directions were not immediately obvious nor intuitive to
us, and this highlights an example where in fact ML-aided
design exploration uncovered new behaviors that we could
potentially exploit.

4.7 An RL-inspired Arbiter
Algorithm 2 presents an algorithm for computing arbitra-

tion priority levels, inspired by our analysis of the neural
network learned by the RL agent. We combine local age,
hop count, and message class. The overall rationale for our
arbitration algorithm follows, but much of this is driven by
the heatmap from Fig. 7. First, to avoid starvation and ensure
forward progress, we always prioritize the oldest message
when there exists any messages with a local age beyond a
certain threshold (24 cycles). Next, we give higher priority
to coherence and response messages, as draining these out
of the NoC as quickly as possible tends to unblock stalled
computation in the CPU and GPU cores. We then prioritize
messages with larger hop counts for North and South ports

643



Algorithm 2 Priority level for each input buffer

1: LA: 5-bit counter for local age
2: HC: 4-bit counter for hop count
3: if (LA > 110002) then
4: priority_level = LA
5: else
6: if (message comes from Core/Memory/North/South) then
7: if (message is coherence or GPU response) then
8: priority_level = HC� 1
9: else
10: priority_level = HC
11: end if
12: else
13: // message comes from West/East
14: if (messages is coherence or GPU response) then
15: priority_level = (11112−HC)� 1
16: else
17: priority_level = 11112−HC
18: end if
19: end if
20: end if

0

W/E

Coherence/
GPU resp

5

HC0HC1HC2HC3LA0LA1LA2LA3LA4

5

Priority_level

P

LA HC

P

LA HC

P

LA HC

…

Select Max

Figure 8: Diagram for the proposed arbiter. W/E denotes that
the input port is from the East or West direction.

but smaller hop counts for West and East ports. This is less
intuitive, but we suspect that it is related to the underlying
X-Y routing of the mesh.

4.8 Hardware Implementation
A few simple hardware modifications are required to sup-

port tracking the local age and hop count of each message.
First, each input buffer is augmented with a small 5-bit LA
(local age) counter, which is initialized to zero on message
arrival and incremented every cycle thereafter until it satu-
rates at 31. There are multiple ways to track the hop count
for each message. If there are a sufficient number of bits
available in the header flit, then a 4-bit HC field can be car-
ried by the header flit that is incremented upon arrival at each
router along its way to its destination. With a sufficiently
regular network topology like a mesh with regular routing
(e.g., X-Y), the hop count can be directly computed based
on the source node ID and the location of the current router.
Other techniques like lookup tables can be utilized, and it is
likely that approximations can also be used (e.g., probabilis-
tically incrementing the hop count to reduce the number of
bits required in the flit header).

The logic for Algorithm 2 must also be implementable in
relatively simple circuitry that can fit within a single clock
cycle. Fig. 8 shows one possible implementation of our al-

gorithm. Each input buffer computes a priority level using
a P-block shown in the top of the figure. A simple Select-
Max circuit chooses the input buffer with the highest prior-
ity [29]. Despite the 20 lines of pseudocode in the algorithm
listing, the P-block can be implemented in a simple circuit,
shown in the bottom section of the figure. Careful selec-
tion of the local age threshold enables the logic for line 3
to be implemented with a simple AND gate (any 5-bit value
24 or greater will always have its two MSBs equal to one).
The subtraction operations on lines 15 and 17 can be imple-
mented by simply inverting the bits of the hop-count counter,
and the conditional nature of the inversion (line 6) can all
be combined into a single XOR gate. The final selections
can be implemented with simple muxes. This overall pro-
cess of generating the algorithm in Algorithm 2, selecting
“implementation-convenient” constants such as 24 in the age
threshold, and ultimately distilling everything down to logic
gates was an entirely human-driven effort. While ML pro-
vided critical clues, the human architect was still responsible
for solving the final puzzle.

Agent NN Round-robin Proposed Arbiter
Latency (ns) 8.17 0.89 1.10 (0.18 + 0.92)

Area (mm2) 1.2344 0.0012 0.0044

Power (mw) 63.67 0.07 0.27

Table 3: Synthesis results.

We evaluate hardware cost with Synopsys Design Com-
piler at a 32nm technology node. Table 3 shows the synthe-
sis results for the Agent inference NN (quantizing to INT8),
round-robin arbiter, and the proposed arbiter in a 6-port router.
Even though we largely parallelized the inference NN (at the
cost of larger area and power overhead), it cannot complete
the inference within one cycle for a NoC at 1GHz. For our
proposed arbiter, the priority level computation and select-
max circuit incur 0.18ns and 0.92ns latency, respectively.
Note that priority level computation can be performed in
parallel with route computation or VC allocation, and hence
does not affect the router’s critical path. The proposed arbiter
can easily satisfy the timing constraint of a 2-stage router
with minor optimization.

4.9 Summary
This section presented one viable way to derive an arbitra-

tion policy for more complex systems using RL. The process
heavily relies on interpretability of neural networks and do-
main knowledge. Smaller neural network architectures are
easier to understand and more tractable for directly analyzing
the weights to extract insights. In addition, domain expertise
is required to reason about design choices and trade-offs.

After training the RL agent, the following human-driven
steps were followed to arrive at the final (implementable) pol-
icy. 1) Analyze the agent neural network’s weights and select
features that show significant positive and negative weights.
2) Compare features’ weights, apply domain knowledge, and
reason about their relative importance. 3) Derive algorithms
based on the features, their inter-relationships, and their rela-
tive importance. This step might result in multiple possible
algorithms and evaluations might be required. 4) Derive
implementable combinational logic based on the algorithm.
Again, domain expertise is required to make design trade-offs

644



0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 A
vg

 E
xe

cu
tio

n 
Ti

m
e

Round-robin iSLIP FIFO ProbDist RL-inspired NN Global-age

Figure 9: Average execution time comparison. Results are
normalized to global-age arbitration.

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

 T
ai

l E
xe

cu
tio

n 
Ti

m
e

Round-robin iSLIP FIFO ProbDist RL-inspired NN Global-age

Figure 10: Program tail execution time comparison. Results
are normalized to global-age arbitration.

and comply with design constraints. 5) Repeat steps 3 and 4
as necessary. In our experience, ML is useful for discovering
patterns and behaviors that we might have otherwise missed,
but it is still up to the humans to distill insights from NNs.

5. RESULTS
5.1 Average Execution Time
Fig. 9 compares the average program execution time among
seven arbitration policies, in which iSLIP [30] and Prob-
Dist [14] are policies proposed in prior work. On average,
our proposed RL-inspired policy reduces average execution
time by 12.5%, 9.0%, 6.7%, and 2.9% compared to Round-
robin, iSLIP, FIFO, and ProbDist policies, respectively. The
results also show the performance for two impractical/ideal
arbitration policies. The first (NN) uses the complete neural
network learned from our RL process, which would take too
much area and be too slow to use in practice. The second
(Global-age) uses the global age of the messages, which is
typically not available due to the complexity of maintaining
global timestamps throughout the entire system. Despite be-
ing limited to only readily-available message features, our
RL-inspired arbitration algorithm achieves performance on
par with these two other impractical approaches.

In a few cases, our proposed policy even outperforms the
Global-age policy. One contributing factor is that we explic-
itly prioritize coherence and response messages over request
messages, whereas Global-age arbitration treats all messages
equally, which could slow down program execution by priori-
tizing requests over responses, especially when the network
is congested. Also, while Global-age has been shown to be
effective, it is not a provably optimal policy.

Our proposed policy uses port information (E-W/N-S asym-
metry) and message type information (prioritizing response
messages). To understand the importance of these features,
we de-featured Algorithm 2 by removing port (Line 6) and
message type (Lines 7, 14) conditions one at a time which ef-

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

0L4H 1L3H 2L2H 3L1H 4L0HN
or

m
al

iz
ed

 A
vg

 E
xe

cu
tio

n 
Ti

m
e

Round-robin iSLIP FIFO ProbDist RL-inspired NN Global-age

Figure 11: Average program execution time comparison of
mixed workloads. L stands for low-injection, H stands for
high-injection workloads.

fectively reduces the richer higher-order features back down
to the basic standalone input feature (e.g., hop count alone).
Compared to our proposed policy, ignoring port information
increases average program execution time by up to 6.5%
(2.2% on average); and ignoring message type information in-
creases average program execution time by up to 5.1% (1.2%
on average). This helps to illustrate the value of using the
NNs to mine and uncover such higher-order features.

5.2 Tail Execution Time
Our workload scenario executes four copies of the same

GPU workload in each quadrant of the overall chip. While
the previous section’s results showed performance improve-
ments on average across the four copies of the workload,
this may not be sufficient if some copies suffer slowdowns.
Fig. 10 shows the results for the tail execution latency of the
workloads. Similar to the average latency, the RL-inspired
approach outperforms Round-robin, iSLIP, FIFO, and Prob-
Dist arbiters, and matches the performance of the impractical
NN and Global-age policies. The round-robin policy shows
variations in program execution time across the four copies
of the workload. Our RL-inspired policy (as well as NN and
Global-age policies) has much more balanced execution time
distributions, resulting in 13.4%, 9.8%, 4.3%, and 3.6% im-
provements in tail execution times compared to Round-robin,
iSLIP, FIFO, and ProbDist policies, respectively. In addition
to reducing program tail execution time, we also observe
that our proposed policy reduces the tail latency of network
messages, and therefore provides better fairness compared to
Round-robin and FIFO policies.

5.3 Mixed-application Workloads
In Fig. 11, we evaluate the proposed arbitration policy in a

mixed workload environment, such as one might find in pub-
lic Cloud scenarios. In particular, we run four different appli-
cations simultaneously in the CPU/GPU system, one in each
quadrant. We divide the applications into a high-injection
(> 0.05 flit/cycle/node) group and a low-injection group, and
classify the experiments into five categories. When the NoC
is reasonably congested (2L2H, 1L3H, and 0L4H), our RL-
inspired arbitration policy performs favorably compared to
the ideal global-age policy. Not surprisingly, when the overall
NoC is under-utilized (4L0H), the choice of arbitration policy
hardly impacts performance.

6. LEARNINGS AND DISCUSSION
In this section, we share some observations and learnings

from our experiences with using RL to drive NoC design.

645



6.1 Limitations of ML Approach
While applying ML in microarchitecture design processes

is a promising approach, it has limitations, and some gaps
in the process must be filled. Our case study highlights the
following limitations and gaps. First, distilling information
from the ML model largely relies on a NN’s interpretability
and the architect’s domain expertise. Filtering out less im-
portant features is an unavoidable step toward concise circuit
implementation. This process might involve additional ex-
periments to determine feature importance. Secondly, human
involvement is necessary to convert an ML model into the
final implementation. Especially under hardware and power
constraints, design trade-offs must be made between perfor-
mance and hardware/power cost. This might result in a final
implementation that consists of only a portion of the ML
model’s functionality. Last but not least, critical functional-
ities (e.g., starvation avoidance) might not be explicit from
the model; therefore, certain design requirements may need
to be addressed separately.

6.2 Feature Encoding
The input features for our RL training have different ranges

of values. Some features only have values from a bounded
range. For example in our work, the message distance is
bounded by the topology and routing of the underlying NoC.
On the other hand, a feature like local age can potentially take
on unbounded values, especially if the RL algorithm has not
yet been fully trained (see also Section 6.4 on starvation issues
in training). We found that it was necessary to normalize the
inputs (Section 4.3) to deal with this wide range of possible
values. For example, without normalization, a long-delayed
message could take on an arbitrarily large value, which could
then dominate the weighted sum of a neuron’s computation.
The large values also led to correspondingly larger gradients,
which we found could destabilize RL training.

The other type of features that required different consider-
ation are categorical features that encode a class or attribute
where the enumerative value does not correlate to any physi-
cal property. For example, messages are requests, responses,
or coherence, which could naturally be encoded as 0, 1, and
2, respectively. However, multiplying such a value by a
neural network weight would generally only provide stable
results if the importance or priority of the message types
followed in the same order (i.e., coherence > response > re-
quest), but the relative importance/ordering may differ across
applications. One-hot encoding enables the neural network
to independently learn the importance of each message class.
The process of engineering effective features to feed into the
RL agent was a human-driven task outside of the automated
aspects of ML.

6.3 Reward Function
Rewards are an integral part of RL; training with the wrong

reward can cause the neural network to improperly optimize
the overall system (and also impact training stability and
convergence rates). Thus far, we have only used global age
as the reward function. However, there are many other pos-
sible metrics, such as quality of service (QoS) and power
consumption. Selection of an effective reward function is yet
another human-driven component of the overall ML-aided

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36 41 46 51

A
vg

 M
es

sa
ge

 L
at

en
cy

 (c
yc

le
)

Training Time

link_util

acc_latencyglobal_age

Figure 12: Training result comparison for the agent neural
networks using different reward functions.

methodology. Below, we consider two additional reward
functions:

• Reciprocal of average accumulated latency: Periodi-
cally (e.g., 10 cycles), we calculate the average latency
L of messages that arrived at their destinations and those
still in-transit. Because lower latency generally indicates
better performance, we define the reward function as the

reciprocal of average message latency (i.e., 1
L ); the lower

the latency, the higher the reward. Because L is computed
once per period, it is then used as a fixed reward for all
actions in the following period. We found that considering
only completed messages in the reward function can lead
to starvation and livelock. The agent learns to optimize
for the latency too aggressively by prioritizing newer mes-
sages and delaying older messages indefinitely. Including
in-transit messages in the reward helps the agent to learn
how to balance between newer and older messages.

• Link utilization in the previous cycle: Link utilization is
calculated as the number of links that transferred at least
one message in the previous cycle divided by the total
number of network links. This reward can help the agent to
maximize link utilization, which in turn generally improves
network throughput. Similar to the above reward, this
reward is used for all actions in the next cycle regardless
of the actual actions taken.

Fig. 12 compares the three reward functions (global-age,
reciprocal of average accumulated latency, and NoC link uti-
lization). The results show that only global_age effectively
reduces average message latency and converges to a steady
state. The other reward functions, acc_latency and link_util,
hardly converge. The key advantage that global_age has over
acc_latency and link_util is that the reward is directly tied
to the specific arbitration decision made and is given imme-
diately. In contrast, both acc_latency and link_util reflect
global behaviors, which are harder to assess the individual
actions taken by the agent. While global objectives should
conceptually be better (e.g., optimize for overall program exe-
cution time rather than other more loosely correlated metrics),
we discovered that the agent learns more effectively when
given more direct and immediate feedback.

6.4 Starvation Avoidance
Our RL methodology for NoCs did not explicitly address

starvation. As discussed in Section 6.3, if the reward function
is not defined properly, the learned strategy can potentially
lead to starvation or livelock. Including starvation/livelock

646



0

100

200

300

400

500

600

700

1 11 21 31 41 51

A
vg

 M
es

sa
ge

 L
at

en
cy

 (c
yc

le
)

Training Time

hoppayload distance

localage allfeature

Figure 13: Comparison of agent training results over time
with different neural-network input features.

avoidance explicitly (integrated in agent decision making al-
gorithm) or implicitly (through reward function) as part of
the training is possible, and the agent might learn to avoid
starvation/livelock. However, designers may still need to
distill the learned behavior and address starvation separately
when designing the final arbitration policies to implement in
hardware. While lines 3-4 of Algorithm 2 ended up making
use of message local age in a way that prevents starvation,
during our initial attempts at designing implementable poli-
cies, we did run into failed approaches that caused livelocks
(for example by putting the consideration of local age inside
the other clauses). Domain expertise is still required to distill
the insights from the neural network into a design that works
in practice.

6.5 Alternative Neural Network Analysis
As an alternative to directly visualizing the neural network

weights, we also experimented with selectively enabling fea-
tures to the RL framework in a hill-climbing fashion. We
started by individually training the neural network with only
one feature at a time. Fig. 13 shows the performance for
a few individual features, plus “allfeatures” for reference,
which shows the performance when all features are consid-
ered at once. Not surprisingly, local age was the feature that
performed the best. We then retrained the neural network uti-
lizing all pairs of features combining local age with one other
feature (not shown in the figure), which resulted in local age
and hop count. We repeated this once more with these two
features plus one additional feature, but this did not result in
any further performance improvements. While hill-climbing
identified the same features as our detailed analysis of the
NN heatmap (the consistency in feature sets provides addi-
tional confidence in our methodology), this does not imply
that hill-climbing alone is sufficient. In particular, knowing
the set of features still does not tell the architect how the
features should be combined or in what contexts they should
be utilized or deemphasized.

The message for this section is that there may be multiple
options for how a computer architect can extract insights
from the RL analysis, and that designers need to utilize their
domain expertise to choose an approach that suits their neural
network architecture and overall architectural application.

7. RELATED WORK
In additional to the work outlined in Section 2.1, iSLIP [30]

is a round-robin-based policy that performs multiple itera-
tions to find a conflict-free input-to-output mapping. Ping-

pong arbitration [31] is another round-robin-based policy that
divides the inputs into groups and applies arbitration recur-
sively to provide fair sharing of switch bandwidth among in-
puts. Das et al. [32] propose a slack-aware arbitration policy
that utilizes memory access criticality information for packet
scheduling within the NoC. Cai et al. [33] propose a NoC
arbitration policy that considers both traffic type and packet
slack for heterogeneous systems. Wavefront allocation [34]
tries to maximally match input to output requests but suffers
from long latency as the number of requesters or resources
increases. Packet chaining [35] improves switch matching
by reusing switch allocation for short packets across multiple
cycles, allowing an efficient matching to be built incremen-
tally. Packet chaining observes that short packets associated
with many coherence messages should be handled differently
in the router. We also observe that the type of message has
an impact on the arbitration decision but do not consider
consecutive messages when making arbiter decisions.

Machine learning in microarchitecture is not new, and there
is a large body of prior work that utilizes machine learning
techniques to improve architectural designs. A thorough sur-
vey can be found in [36]. The perceptron branch predictor [1]
uses a linear classifier that is trained online to predict whether
a branch is taken or not. More recently, Garza et al. [37]
propose a perceptron-based predictor for indirect branch pre-
diction. Ipek et al. [2] propose a reinforcement-learning-
based memory controller that interacts with the system to
optimize performance. Teran et al. [3] propose perceptron
learning for reuse prediction, which uses tags and program
counters to learn correlations between past cache access pat-
terns and future accesses. Peled et al. [38] introduce semantic
locality to capture the relationship between data elements
in a program and propose a memory prefetcher to approxi-
mate semantic locality using reinforcement learning. Zeng
et al. [4] propose a long short-term memory-based memory
prefetcher that learns to capture regular memory access pat-
terns. Hashemi et al. [39] relate contemporary prefetching
strategies to n-gram models in natural language processing
and propose a recurrent-neural-network-based prefetcher that
handles irregular benchmarks. Bhatia et al. [40] propose a
perceptron-based prefetch filtering mechanism that increases
the coverage of the prefetches without negatively impacting
accuracy.

In the NoC, machine learning has been used for rout-
ing, fault tolerance, DVFS control, and router optimization.
Ebrahimi et al. [41] apply reinforcement learning to make
adaptive routing decisions. DiTomaso et al. [42] utilize ML
techniques to train a decision tree to predict faults in an NoC.
Decision trees and offline-trained regression models have
been used to dynamically control the power consumption in
traditional electrical NoCs [43, 44] and photonic NoCs [45].
Fettes et al. [5] propose learning-enabled energy-aware DVFS
for multicore architectures using both supervised learning and
reinforcement learning approaches. Zheng et al. [6] use RL to
learn an DVFS policy and propose an artificial neural network
to efficiently implement the large state-action table required
by RL. Yin et al. [46] propose using RL in NoC arbitration.
Lin et al. [47] use DRL to optimize routerless NoC designs
for better throughput and latency.

647



8. CONCLUSION
Technology has brought disruptive changes and machines

are becoming more powerful. However, in many domains in-
cluding computer architecture, human expertise is still crucial.
In this paper, we leverage machine learning (reinforcement
learning in particular) to design NoC arbiters. We show that
machine learning can be a valuable tool to augment human
creativity and intuition in the exploratory design phases, but
we still relied on humans (ourselves) to distill the underlying
neural network into simple and implementable circuits. We
highlight the limitations and gaps in the current process of
ML-aided architecture designs. While NoC arbitration is but
one component of modern computing systems, we hope that
this work can provide guidance in how to fill the gaps and
apply ML techniques to design better systems.

Acknowledgment
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

9. REFERENCES
[1] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction with

Perceptrons,” in HPCA 2001.

[2] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing
Memory Controllers: A Reinforcement Learning Approach,” in ISCA
2008.

[3] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron Learning for
Reuse Prediction,” in MICRO 2016.

[4] Y. Zeng and X. Guo, “Long Short Term Memory Based Hardware
Prefetcher: A Case Study,” in MEMSYS 2017.

[5] Q. Fettes et al., “Dynamic voltage and frequency scaling in nocs with
supervised and reinforcement learning techniques,” IEEE Transactions
on Computers, vol. 68, no. 3, March 2019.

[6] H. Zheng and A. Louri, “An energy-efficient network-on-chip design
using reinforcement learning,” in DAC 2019.

[7] Q. Zhang, Y. Nian Wu, and S.-C. Zhu, “Interpretable convolutional
neural networks,” in CVPR 2018.

[8] P. M. André Seznec, “A case for (partially)-tagged geometric history
length predictors,” JILP 2006.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in DAC 2001.

[10] N. Enright Jerger, T. Krishna, and L.-S. Peh, On-Chip Networks, 2nd
Edition. Morgan and Claypool Publishers, 2017.

[11] R. Sutton and A. Barto, Reinforcement Learning. MIT Press, 1998.

[12] V. Mnih et al., “Human-level Control through Deep Reinforcement
Learning,” Nature, 518(7540):529–533, Feb 2015.

[13] M. Poremba et al., “There and Back Again: Optimizing the
Interconnect in Networks of Memory Cubes,” in ISCA 2017.

[14] M. M. Lee et al., “Probabilistic Distance-Based Arbitration: Providing
Equality of Service for Many-Core CMPs,” in MICRO 2010.

[15] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm,” in SIGCOMM 1989.

[16] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switching Networks,” in SIGCOMM 1990.

[17] D. Abts and D. Weisser, “Age-based Packet Arbitration in Large-radix
K-ary N-cubes,” in SC 2007.

[18] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[19] L.-J. Lin, “Self-improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching,” Machine Learning, vol. 8, no. 3, pp.
293–321, May 1992.

[20] N. Binkert et al., “The gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, Aug. 2011.

[21] A. Gutierrez et al., “Lost in Abstraction: Pitfalls of Analyzing GPUs
at the Intermediate Language Level,” in HPCA 2018.

[22] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A
Detailed On-chip Network Model Inside a Full-system Simulator,” in
ISPASS 2009.

[23] J. Yin et al., “Efficient Synthetic Traffic Models for Large, Complex
SoCs,” in HPCA 2016.

[24] M. Badr and N. Enright Jerger, “SynFull: Synthetic Traffic Models
Capturing Cache Coherent Behaviour,” in ISCA 2014.

[25] AMD Inc., “AMD SDK,” http://developer.amd.com/tools-and-sdks.

[26] K. Krommydas et al., “On the characterization of OpenCL dwarfs on
fixed and reconfigurable platforms,” in ASAP 2014.

[27] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in IISWC 2009.

[28] “ECP Proxy Application,” https://proxyapps.exascaleproject.org/app/.

[29] B. Yuce et al., “A Fast Circuit Topology for Finding the Maximum of
N k-bit Numbers,” in ARITH 2013.

[30] N. McKeown, “The iSLIP Scheduling Algorithm for Input-queued
Switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, April 1999.

[31] H. J. Chao, C. H. Lam, and X. Guo, “A Fast Arbitration Scheme for
Terabit Packet Switches,” in GLOBECOM 1999.

[32] R. Das, O. Mutlu, T. Moscibroda, and C. Das, “Aergia: Exploiting
Packet Latency Slack in On-Chip Networks,” in ISCA 2010.

[33] X. Cai, J. Yin, and P. Zhou, “An orchestrated noc prioritization
mechanism for heterogeneous cpu-gpu systems,” Integration, vol. 65,
March 2019.

[34] J. Howard et al., “A 48-core IA-32 processor in 45 nm CMOS using
on-die message-passing and DVFS for performance and power
scaling,” JSSC 2011, vol. 46, no. 1.

[35] G. Michelogiannakis et al., “Packet chaining: Efficient single-cycle
allocation for on-chip networks,” in MICRO 2011.

[36] D. D. Penney and L. Chen, “A survey of machine learning applied to
computer architecture design,” arXiv:1909.12373 [cs.AR].

[37] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez,
“Bit-level perceptron prediction for indirect branches,” in ISCA 2019.

[38] L. Peled et al., “Semantic Locality and Context-based Prefetching
Using Reinforcement Learning,” in ISCA 2015.

[39] M. Hashemi et al., “Learning Memory Access Patterns,”
arXiv:1803.02329 [cs.LG].

[40] E. Bhatia et al., “Perceptron-based prefetch filtering,” in ISCA 2019.

[41] M. Ebrahimi et al., “Haraq: Congestion-aware learning model for
highly adaptive routing algorithm in on-chip networks,” in NOCS
2012.

[42] D. DiTomaso et al., “Dynamic error mitigation in nocs using
intelligent prediction techniques,” in MICRO 2016.

[43] M. Clark et al., “LEAD: Learning-enabled energy-aware dynamic
voltage/frequency scaling in NoCs,” in DAC 2018.

[44] D. DiTomaso et al., “Machine learning enabled power-aware
network-on-chip design,” in DATE 2017.

[45] S. Van Winkle et al., “Extending the power-efficiency and
performance of photonic interconnects for heterogeneous multicores
with machine learning,” in HPCA 2018.

[46] J. Yin et al., “Toward more efficient noc arbitration: A deep
reinforcement learning approach,” AIDArch 2018.

[47] T.-R. Lin et al., “Optimizing routerless network-on-chip designs: An
innovative learning-based framework,” arXiv:1905.04423 [cs.AR].

648


