
Trans-FW: Short Circuiting Page Table Walk in
Multi-GPU Systems via Remote Forwarding

Bingyao Li∗, Jieming Yin†, Anup Holey‡, Youtao Zhang∗, Jun Yang∗, and Xulong Tang∗
∗University of Pittsburgh, Pittsburgh, Pennsylvania, USA

†Lehigh University, Bethlehem, Pennsylvania, USA
‡NVIDIA, Santa Clara, California, USA

Email: {bil35, juy9, tax6}@pitt.edu, Jieming.Yin@outlook.com, aholey@nvidia.com, zhangyt@cs.pitt.edu

Abstract—Multi-GPU systems have become a popular platform
to meet the ever-growing application demands. However, employ-
ing multiple GPUs does not guarantee proportional performance
improvements. While prior works have extensively studied the
optimizations to mitigate the non-uniform memory accesses
(NUMA) overheads, the address translation process also plays
an important role in shaping the overall execution performance.
In this paper, we investigate the address translation process in
multi-GPU systems under unified virtual memory (UVM). We
specifically focus on the efficiency of page table walk and identify
three major latency penalties: i) queuing for available page table
walk threads, ii) memory accesses for page walk cache misses, and
iii) handling page faults. Based on our observations, we propose
Trans-FW, which short circuits the page table walk by leveraging
substantial translation sharing and eager remote translation
forwarding. Experimental results on 10 representative multi-GPU
applications show that our proposed approach improves the
overall performance by 53.8% on average.

Index Terms—multi-GPU, page fault, page table walk

I. INTRODUCTION

In recent years, multi-GPU systems have gained momentum
to bridge the ever-increasing gap between GPU memory
capacity and application demands. Commercial multi-GPU
systems, including NVIDIA DGX [52] and Intel Xe [34],
incorporate multiple GPUs connected through interconnections
(e.g., PCIe [50] and NVLink [29]) to provide a large aggregated
memory capacity through unified virtual memory (UVM). This
significantly simplifies the application deployment on multi-
GPU systems and has gain popularity in machine learning [65],
[75], bioinformatics [21], [31], scientific computing [48], and
entertainment [27], [77].

However, the promise of multi-GPUs is constrained by
i) expensive address translation process and ii) non-uniform
memory access (NUMA) overheads. While substantial prior
works have investigated the NUMA overheads [11], [47], [49],
[80], the address translation receives little attention in multi-
GPUs. Specifically, translation that misses the GPU local TLB
hierarchy must go through local multi-level page table walk
handled by GPU MMU (GMMU). If the page is invalid in the
local page table, a far fault1 is generated and handled by the
UVM driver on the CPU side which also introduce latency to
the address translation process.

1In this paper, we use the term “far fault” and GPU “local page fault”
interchangeably.

TABLE I
COMPARISON WITH PRIOR TECHNIQUES.

Techniques Reduce PT Reduce PW- Reduce far Write Multi
queuing cache misses fault latency intensive -GPU

TLB optimizations[38], [78] X X 7 7 7
[16], [57], [59], [61], [71], [73]
PW-cache design[20], [45], [58] 7 X 7 X 7
PW-cache prefetch [46] 7 X 7 X 7
Page replication [25], [49] 7 7 X 7 7
Page walk scheduling[64], [66] X 7 7 X 7
Large page [12], [56], [60] X X 7 7 7
Our approach X X X X X

In this paper, we identify three latency penalties in multi-
GPU address translation process. First, the translation that
misses the TLBs has to be queued and wait for available page
table walk threads. Second, the page table walk frequently
misses the MMU cache (i.e., page table walk cache). Third,
there exist substantial GPU local page faults due to frequent
page migration across multiple GPUs. Prior works on CPU
and GPU address translation optimization are ill-suited in
the context of multi-GPUs. We provide a comprehensive
summary of related works in Table I. First, existing TLB
optimizations (e.g., range-based TLB [78], clustering TLB [59],
compression [71], least-TLB [42], and TLB probing [16])
do not optimize the page table walk latencies and cannot
mitigate the frequent local page faults in multi-GPUs. Second,
MMU cache prefetching is effective in accelerating page table
walking. However, prefetching does not mitigate the page table
walk queuing overhead nor the page fault handling overhead.
Third, prior works on irregular page table walk and multi-
tenancy page table walk focus on single GPU [64], [66], [67].
They are not suitable for multi-GPU executions as they do not
optimize the local page faults caused by page sharing among
GPUs. Fourth, page replication [25], [49] can reduce local page
fault handling latency. However, it is not suitable for write-
intensive applications, as a write to a page invalidates all other
replications. Finally, although employing large pages improves
the TLB reach, it may cause extra page faults if a large page is
frequently shared among different GPUs throughout program
execution, due to the increased false sharing.

Motivated by these challenges, we systematically investigate
and optimize the address translation in multi-GPU systems. We
observe and quantify three latency overheads in the translation
process. To mitigate these overheads, we propose Trans-

FW (Translation Forwarding). The main contributions of the
paper are summarized below.
•We investigate the page table walk performance in multi-GPUs.

We identify three latency penalties in multi-GPU address
translation process.
•We propose Trans-FW to improve the page table walk

performance in multi-GPU executions. First, short circuiting
is employed in GMMU by early sending local page faults
to host MMU. Second, we leverage remote GPU to supply
translation requests instead of waiting in the host when doing
so is beneficial.
•We evaluate Trans-FW using 10 representative applications

covering various data access patterns across GPUs. Exper-
iment results show that Trans-FW achieves an average of
53.8% overall performance improvement.
•We evaluate Trans-FW with different PW-cache structures,

page replication, large page, PW-cache prefetching, and
TLB optimizations. The results show that Trans-FW either
outperforms the existing approach by taking the multi-GPU
execution characteristics into account, or works along with
the existing approaches to bring additional benefits.

II. BACKGROUND

A. Multi-GPU Architecture

In this paper, we target multiple discrete GPUs connected
through an interconnect (e.g., PCIe and NVLink). Figure 1
illustrates the target multi-GPU architecture [6], [7], [39].
Specifically, each GPU consists of multiple Compute Units
(CUs) and two levels of TLBs for address translation: i) per-CU
fully associative private L1 TLB and ii) per-GPU shared L2
TLB for all CUs. Unified virtual memory [54] is employed
and managed by the UVM-driver. Note that, each GPU has
its own local memory and local page table. A GPU Memory
Management Unit (GMMU) handles local page table walks.
The GMMU comprises i) a page walk queue (PW-queue) to
buffer the translation requests waiting for available page walk
threads, ii) a page walk cache (PW-cache) that holds the recent
translations to reduce the number of memory accesses of page
table walks, and iii) multi-threaded page table walk (PT-walk)
that handles multiple translation requests concurrently. The
UVM-driver on the CPU side is responsible for coordinating
all GPU far faults. The UVM driver manages a centralized page
table in the host memory, which holds all valid and up-to-date
address translations for all GPUs and in which GPU/CPU the
physical addresses are located.

Address translation: Figure 1 also illustrates the address
translation process. The memory requests generated by the same
wavefront are first coalesced by the GPU memory coalescing
unit. Then, the L1 data cache and the L1 TLB perform lookups
in parallel in a virtually indexed physically tagged (VIPT)
TLB-cache design (1). Upon L1 TLB misses, the L1 Miss
Status Holding Register (MSHR) is first checked to filter out
repetitive requests, and the outstanding requests are forwarded
to the L2 TLB for lookup (2). Translations that miss in the
L2 TLB and L2 MSHR are sent to the local PT-walk in the
GMMU (3). Because there is limited number of PT-walk

G
PU

3

Shared L2
cache

Shared L2 TLB

SA

Host MMU
TLB

PW-cache

CPU

Device
memory

PW-queue

PW-cache

PT-walk

GMMU

CR3
L5 L2 L1…

PW-cache

PT-walk

PW-queue

L5
index

L4
index

L3
index

L2
index

Next
Page

L2 123 9a8 11c 009 0ac

L3 123 9a8 11c xxx a08

L4 123 9a8 xxx xxx 116

L5 123 xxx xxx xxx 8bc

……

G
PU

0

...

PW-queue PT-walk

INTERCONNECT

MSHR

...

CU
CU
CU

L1 S$ L1 I$

CU

L1 V$ L1TLB

SIMD
lanes

Coalescing

Reg
file

1

2
MSHR

3

4
5

②
③ ④

⑤

SA SA

UVM driver (Software)

①

Page
Table

Fig. 1. Multi-GPU system-architecture.

threads, L2 TLB misses may not be served immediately. As a
result, these translation requests will be stored in the PW-queue
and wait for available PT-walk threads. During the page table
walking, the translation is first checked in the PW-cache (4); if
it misses the PW-cache, the GPU local page table is accessed,
which can be expensive and involves multiple memory accesses
(5). If the page walk fails, a far fault is propagated to the
GMMU and kept in a structure called GPU Fault Buffer [6],
[7]. Each time a far fault arises, the GMMU sends an alert
to the UMV-driver. Upon the receipt of a far fault, the UVM
driver fetches the fault information and caches them on the host
side. The cached page faults are processed in batch granularity
(the batch size is 256 [53]). Per batch, the UVM-driver initiates
threads to perform page table walks using the centralized page
table, initiates data transfer, and updates the GPU local page
tables [7]. The translation request is replayed after the far fault
is resolved.

B. Driver Versus Hardware Handled Far Faults

While multi-GPUs typically rely on the UVM-driver software
to handle the far faults (as we discussed above), this software
handled far faults creates a severe performance bottleneck
which limits the scalability multi-GPUs. Recently, there has
been an increasing trend for multi-GPUs to leverage hardware
(e.g., host MMU/IOMMU2 [43], [44]) to accelerate the far fault
handling. Figure 1 illustrates the address translation process
using hardware to handle far faults. The process within each
GPU is identical to the driver handled page faults. When a far
fault is generated, it is sent to the host and then handled by host
MMU (1). Specifically, upon receiving a translation request,
the host MMU first performs a host MMU TLB lookup. If the
translation misses in the TLB, the request waits in the host
MMU PW-queue for PT-walk (2). The PT-walk process in
the host MMU is similar to the GPU local PT-walk, including

2In this paper, we use the term “host MMU” and “IOMMU” interchangeably.

1

3

5

7

9

4 8 16 24 32A
dd

re
ss

 tr
an

sl
at

io
n

la
te

nc
y

Number of GPUs

Hardware Software

~ 4.5x

0

0.5

1

1.5

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR Ave
.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

(a) (b)

Fig. 2. (a) Normalized execution time of hardware approach versus software
approach when the number of GPUs increases. (b) Performance of hardware
approach normalized to software approach for all benchmarks in four GPUs.

host MMU PW-cache lookup (3), host MMU PT-walk for
PW-cache misses (4), and host MMU TLB update (5). The
translation request is replayed after the page fault is resolved,
following the same process discussed above.

We quantitatively compare UVM-driver (software) handled
far faults versus host MMU (hardware) handled far faults.
Specifically, we carefully model the UVM-driver handled far
faults (e.g., batch size and buffer size for far faults, far fault
handling cost, and the number of threads for page table walk)
based on prior works [6], [7], [39], [53]. We also implement
hardware handled far faults as discussed above. Figure 2(a)
shows the scalability of software versus hardware when the
GPU count increases. All the results are normalized to the
hardware approach with four GPUs. As one can observe,
the address translation overhead of software is 4.5× higher
than that of hardware in 32 GPUs. There is an increasing
gap between software and hardware implementations, making
the software approach one of the main scalability constraints
in multi-GPU systems. Figure 2(b) shows the performance
of hardware approach normalized to software approach in
four GPUs using our targeted applications (details discussed
shortly in Table III). We observe that the hardware approach
outperforms the software approach by up to 56.3% and 28.4%
on average.

Thus, unless specified otherwise, we adopt the hardware
handled far faults as the baseline in our paper for a fair
comparison. We identify three major latencies in the baseline
address translation: i) waiting time for available PT-walk
threads in the PW-queue (3 and 2). ii) additionally memory
accesses after PW-cache misses (5 and 4) and iii) handling
far faults caused by page sharing among multiple GPUs (1 , 2 ,
3 , 4 , and replay). We quantitatively investigate these latencies
in Section III-B.

Page walk cache: In this paper, we adopt the Unified
Translation Cache (UTC) [22] in both the baseline and our
approach. Specifically, the cache entry in UTC is maintained
separately for each page level tagged with indices in the
virtual address (i.e., an L5 entry is tagged with the L5 index,
an L4 entry is tagged with the L5 and L4 indices, and so
forth). Therefore, a single lookup can provide the longest
matching prefix, avoiding nested PW-cache lookups. In UTC
structure, entries from different levels of the page table are
mixed in a single cache. Figure 1 also shows an example of
the UTC structure. After the PT-walk for translating the virtual
address (123, 9a8, 11c, 009, 1b8), the contents in PW-cache
are (123/9a8/11c/009, 0ac) as L2 entry, (123/9a8/11c, a08)
as L3 entry, (123/9a8, 116) as L4 entry, and (123, 8be) as

L5 entry. If a subsequent query tries to translate the virtual
address (123, 9a8, 11c, 026, 00b), the PT-walk first checks
the PW-cache. Three matching entries can be found, i.e., (123,
8be) in L5, (123/9a8, 116) in L4, and (123/9a8/11c, a08) in
L3. Then the L3 entry is used because this tag matches the
longest prefix of the virtual address. Note that, all the contents
in the index fields store bits from virtual address, and the
Next Page field stores physical address. For the same virtual
address, the PW-cache index content is the same, and only
the Next Page field is different because they correspond to
different GPUs/CPU.

III. MOTIVATIONAL STUDY

A. Baseline Configuration and Applications

We conduct our characterization and later evaluate our
proposed Trans-FW using the MGPUSim [69]. MGPUSim sup-
ports multi-GPU simulation and is validated against industrial
multi-GPU systems [9]. To model unified virtual memory and
the full address translation process, we substantially modified
and extended MGPUSim by adding i) per-GPU GMMU module
with GPU local page tables, local PW-queue, and local PW-
cache, and ii) host MMU module with a host TLB, host MMU
page table, host MMU PW-cache, and host MMU PW-queue.

TABLE II
BASELINE MULTI-GPU CONFIGURATION.

Module Configuration
CU 1.0 GHz, 64 per GPU
L1 Vector Cache 16 KB, 4-way
L1 Inst Cache 32 KB, 4-way
L1 Scalar Cache 16 KB, 4-way
L2 Cache 256 KB, 16-way
DRAM 4 GB
L1 TLB 32 entries, 32-way, 1-cycle lookup latency,

CU private, LRU replacement policy
L2 TLB 512 entries, 16-way, 10-cycle lookup latency,

CUs shared, LRU replacement policy
Host MMU TLB 2048 entries, 64-way, GPUs shared,

LRU replacement policy
Page table walk Host MMU 16 shared page table walker,

GMMU 8 shared page table walker [64], [66], [74],
100-cycle latency per level [32]

Page walk cache 128 entries shared across page table walker [64]
Page walk queue 64 entries
CPU-GPU interconnection PCIe, 150-cycle latency [32]

TABLE III
LIST OF APPLICATIONS.

Abbr. Application Benchmark
Suite PFPKI Access

Pattern
AES AES-256 Encryption Hetero-Mark 0.016 Partition
FIR Finite Impulse Resp. Hetero-Mark 0.002 Adjacent
KM KMeans Hetero-Mark 3.636 Adjacent
PR PageRank Hetero-Mark 9.244 Random
MM Matrix Multiplication AMDAPPSDK 3.217 Scatter-Gather
MT Matrix Transpose AMDAPPSDK 34.273 Scatter-Gather
SC Simple Convolution AMDAPPSDK 9.013 Adjacent
ST Stencil 2D SHOC 17.564 Adjacent
Conv2d Convolution 2D DNN-Mark 1.782 Adjacent
Im2col Image to Column DNN-Mark 1.198 Scatter-Gather

Baseline GPU configuration: In this paper, we target a
4-GPU system where each GPU has its own page table stored
in its device memory [43], [44], [76]. The detailed baseline
configurations are listed in Table II. Note that, our approach
is also applicable to different GPU counts and we provide
a sensitivity study with 8 and 16 GPUs in Section V-B. We

employ a five-level nested page table organization, thereby a
four-level PW-cache [33]. We also evaluate four-level page
table in Section V-B. We use UTC PW-cache organization. The
total size of the PW-cache is typically in the range of 64 to
128 [14], [45], [64] under a four-level page table. We employ
128-entry PW-cache in our five-level page table in GMMU and
host MMU. The CTA policy in the baseline and our approach
is as follows. The CTA scheduler first schedules the CTAs
across CUs within a GPU in a round-robin fashion, and then
moves to the next GPU only when the GPU has no available
resources. That is, the CTA is scheduled greedily across GPUs.
This scheduling captures the inter-CTA locality within a GPU
and also maintains computing balancing across CUs.

Applications: We use 10 applications from Hetero-
Mark [68], AMDAPPSDK [8], SHOC [24], and DNN
Mark [26] benchmark suites. The details of the applications
are listed in Table III. We use their multi-GPU implementation
from [69], which is also used by prior works [15], [42], [70].
The applications cover a wide range of data access/sharing pat-
terns in multi-GPU environment. We classify these applications
into four categories based on their memory access patterns:
random (PR), partition (AES), adjacent (ST, FIR, SC,
Conv2d, KM), and scatter-gather (MT, MM, Im2col).

B. GPU Page Walk Characterization

0%

25%

50%

75%

100%

MT MM PR ST KM Conv2d SC Im2col AES FIR

Ti
m

e
pe

rc
en

ta
ge

GMMU PW-queue GMMU PW-cache miss Interconnect+Replay
Host MMU PW-queue Host MMU PW-cache miss Page migration

Local page fault latency

Fig. 3. Latency breakdown of GPU L2 TLB misses.

Recall the three latencies discussed in Section II-B, Figure 3
shows the latency breakdown of GPU L2 TLB misses. One
can make the following observations. First, handling local page
faults causes significant overhead and accounts for 86.1% of
the L2 TLB miss latency. The local page faults latency can
be further breakdown into i) waiting in the shared host MMU
PW-queue, ii) missing the host MMU PW-cache, iii) migrating
page to local memory, and iv) CPU-GPU interconnection and
request replayed when page fault is resolved. Second, 25.0% of
the latency is caused by requests waiting for the available page
table walk thread in the PW-queue. The PW-queue queuing
latency in shared host MMU is generally longer than that in
the GMMU for most applications. Specifically, the average
queuing latencies are 4.1% and 20.9% for the GMMU PW-
queue and the host MMU PW-queue, respectively. This is
because the host MMU handles page faults generated from
all GPUs, encountering severer contention than local GPUs.
Finally, an average of 9.0% and 9.3% latency is caused by
GMMU and host MMU PW-cache miss, respectively.

Room for improvement: We study the performance gains
when we i) adopt infinite PW-cache in both GPU and host
MMU, ii) employ infinite page table walking threads in both

3.85

0
0.5

1
1.5

2
2.5

3

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Infinite PW-cache only Infinite PT-walk only
No page migration latency No GPU local page fault

Fig. 4. Performance improvements when latency sources are resolved.

GPU and host MMU, and iii) eliminate all GPU local page
faults. The normalized execution performance is shown in
Figure 4. In the results, we separate the influence of each
latency by applying only one of the above three impractical
optimizations at a time. For example, when we adopt infinite
PW-cache, the other two configurations remain the same as
in the baseline. We next discuss the implication from each
individual optimization in detail.

0
0.2
0.4
0.6
0.8

1

MT MM PR ST KM Conv2d SC Im2col AES FIR

H
it

ra
te

L5 L4 L3 L2
Fig. 5. GMMU PW-cache hit rate in the baseline.

0
0.2
0.4
0.6
0.8

1

MT MM PR ST KM Conv2d SC Im2col AES FIR

H
it

ra
te

L5 L4 L3 L2
Fig. 6. Host MMU PW-cache hit rate in the baseline.

Implication of infinite PW-cache: An infinite-sized PW-
cache only has cold misses. We employ infinite-sized PW-
cache in both GMMU and host MMU. The first bar of each
application in Figure 4 shows the performance improvement of
an infinite PW-cache. Overall, the infinite PW-cache achieves up
to 29.6% speedup, with an average performance improvement
of 16.2%. To better understand the improvement, we report the
hit rates for GMMU and host MMU PW-caches in Figure 5
and Figure 6, respectively. For GMMU PW-cache, 56.6% of
page table walks can get the translation within 1 to 2 memory
accesses and the rest of the translations must go through 3 to 4
memory accesses (i.e., walking the page table). For host MMU
PW-cache, we observe 47.5% hit rates in the higher levels
(e.g., L4) and 50.9% hit rates in the lower levels (e.g., L3 and
L2). Therefore, multiple memory accesses are still required
for address translation in the host MMU. Since the memory
accesses are long latency operations, poor PW-cache hit rate
can degrade the performance.

Implication of infinite PT-walk threads: With infinite page
table walking threads in both GMMU and host MMU, all TLB
misses are served immediately without waiting in the PW-
queues. Referring to the second set of bars in Figure 4, we
observe an average of 42.6% performance improvement over
the baseline. The performance gain is higher for applications
(e.g., PR, SC, and MT) whose waiting latency occupies higher
percentages of the L2 TLB miss latency.

Implication of eliminating GPU page faults: Eliminating
all GPU local page faults ensures that all translations are found

in the GPU local page tables, leading to an average of 2.2×
performance improvement (the fourth bar of each application
in Figure 4). We quantify the page-faults-per-kilo-instructions
(PFPKI) and show the PFPKI of each application in Table III.
We observe that applications with substantial page sharing
among multiple GPUs (detailed study in Section III-C) have
higher PFPKI values (e.g., MT, PR, and SC). This is because
page sharing causes frequent page migration among GPUs,
and hence subsequent page accesses to the migrated page will
generate GPU local page faults. In contrast, applications with
less page sharing across the GPUs (i.e., each GPU works
on its own local data partitions) have lower PFPKI, such as
AES and FIR. We also observe that applications with higher
PFPKI achieve relatively high performance improvement (e.g.,
MT and SC), whereas lower PFPKI show less performance
improvement (e.g., AES and FIR). However, ST has a high
PFPKI but low performance improvement. This is because the
contention in the host MMU page table walk is less severe
in ST execution. In contrast, Conv2d has a low PFPKI but a
high performance improvement. This is because a large number
of pending requests are coalesced to the same page fault in
L2 MSHR. Reducing the time for handling a page fault can
significantly benefit the whole execution.

We show the performance improvement where we eliminate
the data page migration latency while preserving the address
translation latency (third bar in Figure 4). The results show
an average of 63.9% performance improvement over baseline.
Comparing the results with the above study, which eliminates
the local page faults (2.2× performance improvement), one
can observe that the address translation plays an important
role in improving the performance, and there exists a large
optimization potential.

C. Page Sharing Characterization

0%

25%

50%

75%

100%

MT MM PR ST KM Conv2d SC Im2col AES FIR

Pe
rc

en
ta

ge
 o

f p
ag

e
sh

ar
in

g
of

 a
ll

ac
ce

ss
es

One GPU Shared by 2 Shared by 3 Shared by 4

Fig. 7. Percentage of page sharing.

Observation 1: There exist substantial page sharing among
multiple GPUs. Figure 7 shows the page sharing among
multiple GPUs during the execution of each application.
Specifically, we define page sharing ratio as the percentage
of shared page accesses divided by the total number of page
accesses during the execution of the application. As one can
observe, a significant fraction of pages is shared by multiple
GPUs. For example, in MM, PR, KM and SC, almost all pages
are shared by all four GPUs. In MT and Conv2d, about half of
the pages are shared between two or four GPUs. Such intensive
page sharing also brings significant address translation sharing
among the GPUs.

Observation 2: Local PW-cache misses and page faults can
be resolved by other GPUs. We investigate whether a local

0
0.2
0.4
0.6
0.8

1

MT MM PR ST KM Conv2d SC Im2col AES FIR

H
it

ra
te

L5 L4 L3 L2
Fig. 8. Remote PW-cache hit rate

page fault can find the translation in other GPUs’ PW-caches.
The intuition behind is to leverage the translation reuses that
stem from page sharing among GPUs to reduce the number of
PW-cache misses and the latency of handling local page faults.
To capture this opportunity, we define remote PW-cache hit as
the percentage of local page faults that hits remote GPU’s PW-
cache. We observe 88.2% remote hit rate (all levels combined)
in Figure 8. It is also important to note that, an average of
45.2% can hit in lower levels of PW-cache (e.g., L3 and L2),
indicating that only 1-2 memory accesses are needed to get
the translation from the remote GPU.

IV. OUR APPROACH

A. High Level Overview

In this paper, we propose Trans-FW that leverages the
substantial translation sharing among GPUs and employs the
remote GPU to serve the translation requests when doing so is
beneficial. There are three major challenges to implementing
an effective and efficient remote forwarding scheme. First,
the remote GPU supplies the translation request only if it
holds the valid page. Therefore, it is important to determine
which GPU has the valid page. Second, accessing remote page
tables may take longer than accessing the host page tables
due to network congestion and remote PT-walk contention
(e.g., PW-queue waiting and PW-cache misses). Thus, it is
important to dynamically detect the beneficial scenarios and
provide flexible and efficient hardware support for guiding and
handling translation requests remotely. Finally, the proposed
scheme should have minimal hardware overhead and is light-
weight compared to enlarging the TLB capacity. To this end,
we propose Trans-FW. Figure 9 shows the high-level overview
of our design.
B. Short Circuiting in GMMU

Recall our discussion in the GMMU PT-walk handling. For a
given address translation request that misses the GPU L2 TLB,
it will experience PW-queue queuing as well as PT-walk in the
GMMU. The PT-walk latency can be large if the request misses
the PW-caches. Suppose that the requested page is invalid in
the GMMU page table, this request will be eventually a local
page fault sent to the remote host MMU. Thus, the local PW-
queuing and PT-walk add “unnecessary” latency to that request.
To address this, we propose to “short circuit” the translation
in GMMUs by eagerly sending the request to the host MMU
upon an L2 TLB miss. Doing so avoids the aforementioned
unnecessary latencies and can be particularly beneficial for
requests that eventually cause local page faults. In other words,
it allows the potential local page faults to be served early by
the host MMU. However, the short circuiting approach may
lead to an excessive number of requests being sent to the

Virtual Addr

GPU L2 TLB miss

Remote
GMMU1Forwarding

Table

Host MMU

Short circuiting in GMMU
Short circuiting in host MMU
Baseline

Pending
Request Table

GMMU0

Fig. 9. High level overview of Trans-FW.

PT-walk

CR3 L5 L2 L1…

L5 L4 L3 L2 Page
012 023 0a6 024 123
012 023 0a6 xxx 03b
012 023 xxx xxx 043
012 xxx xxx xxx 27c

……

PW-cache

GPU0
L2 TLB

Host MMU

Virtual Addr

GMMU

PW-cache

PT-walk

GPU1
L2 TLB

Forwarding
Table

CPU

🅐
PW-queue

GMMU

PW-cache

PT-walk

PW-queue

TLB

PW-cache PT-walk

🅔
PW-queue

🅓

🅒

🅕

PRT

🅙

UVM driver (Software) 🅗

PRT🅑

🅘

finger
print

……

h1(
key)

VPN offset

125

VPN offsetPRT FT
key

Cuckoo
hash

h
2 (key)

bucket
13 bits

compare

True/False

……

fin
ge

r
pr

in
t

fingerprint

……

GPUid

Cuckoo
hash

⊕
11 bits

key

h1(
key)

h
2 (key)

True/False

1000

🅖

Fig. 10. Translation lookup in Trans-FW, and details of PRT and FT.

host MMU because the number of GPU L2 TLB misses is
significantly larger than the GPU local page faults. Therefore, a
naive implementation of short-circuiting the GMMU may cause
CPU-GPU interconnection congestion and PT-walk contention
of the host MMU. To mitigate the contention, we propose a
Pending Request Table (PRT) in each GMMU as a filter to
reduce the number of requests sent to the host MMU. We next
discuss the design of PRT.

Pending request table: The PRT tracks the translations of
all pages that reside in the GPU’s local memory. A Cuckoo
filter [28] is implemented in the PRT, which is a hardware-
efficient structure that supports fast set membership testing.
Figure 10 shows the microarchitectural details of PRT (green
box). Specifically, the PRT consists of 125 buckets and each
bucket comprises four fingerprints. Each inserted item (i.e.,
VPN) is converted into a fingerprint using the cuckoo hash
functions (i.e., h1 and h2, MetroHash hash function [35] is
employed in our approach.). A fingerprint is formed by using
the virtual page number. The Cuckoo filter provides efficient
insertion and deletion operations. It inserts the fingerprint of an
entry into one of the two alternative buckets indicated by the
two hash functions. If neither bucket has space, the fingerprint
selects one of the candidate buckets, kicks out the existing
fingerprint, and re-inserts this victim fingerprint into its own
alternate location. When looking up an item, the Cuckoo filter
first calculates the item’s fingerprint and the two candidate
buckets. If any existing fingerprint in either bucket matches the
request, the cuckoo filter returns true. Otherwise, it returns false.
In our current design, the PRT comprises eight comparators
so it can check all the fingerprint candidates from the two
buckets in parallel. Deletion is supported by removing one
copy of matched fingerprint from any candidate bucket. Note
that, when two identical fingerprints are stored in the two
checked buckets, a random one is selected and deleted, which
causes false positive cases. Note that, the PRT needs to be
updated when a page is migrated. Specifically, when a page is
migrated away from the GPU, the virtual page number is used
to locate the fingerprint. Then, this fingerprint is removed from
the PRT. When a new page is migrated to the GPU, a new
fingerprint is formed and inserted into the PRT. This update
progress is off the execution critical path and can overlap with
and be hidden by GPU execution.

Lookup procedure: When a translation request misses in
the GPU local L2 TLB, the PRT is checked first. If the request

misses the PRT, which indicates that the requested translation
is definitely invalid in the local GPU page table and the page
is not presented locally (since the cuckoo filter has no false
negative cases), then the request is early forwarded to the
host MMU without a GMMU PT-walk. If the request hits the
PRT, which indicates a high potential of finding a translation
locally, then the request is sent to the GMMU PT-walk for local
page table lookup. Note that, it can happen that the Cuckoo
filter provides a false prediction and the GPU doesn’t hold
the translation. A local page fault will be generated after the
GMMU PT-walk, which is the same as the baseline execution.
However, considering a low false positive in our configuration,
this scenario rarely happens and its additional latency has little
impact on the overall performance.

C. Short Circuiting in Host MMU

Short circuiting the GMMU is beneficial only if the page fault
requests can be handled timely in the host MMU. However,
this is not always guaranteed. Requests in the host MMU
might also experience long latency due to contention in the
host MMU’s PW-queue and PW-cache thrashing. Recall our
observation in Section III-C where a significant fraction of
translation prefix can be found in remote GPUs’ PW-caches.
To this end, we propose short circuiting the PT-walk in the
host MMU by sending translation requests to remote GPUs if
doing so is beneficial. Specifically, we propose to “borrow” the
PT-walk in remote GPUs to avoid the contention and potential
overheads in the host MMU. We introduce a structure, called
Forwarding Table in the host MMU, and address the two
important questions: how to borrow? and when to borrow?.

How to borrow: To borrow PT-walk from a remote GPU,
it is important to first determine which GPU has the valid
page. If a remote GPU does not hold the valid page, there
is no performance gain since the remote GPU will also
generate a page fault on the request. Therefore, we implement a
Forwarding Table (FT) in the host MMU to indicate which GPU
has the valid page. The FT leverages a similar Cuckoo filter
design as in PRT to guide the forwarding of the requests to the
remote GPUs. Figure 10 also shows the microarchitectural
details of FT (grey box). Specifically, the FT has 1,000
buckets. The key used by the two cuckoo hash functions
is a concatenation of VPN and GPUid . Since each bucket
only has two fingerprints, we implement four comparators
to perform parallel item lookups. A fingerprint is formed by
concatenating the virtual page number and the owner GPU ID

(i.e., the GPU who has the valid page) when the fingerprint
is inserted into the FT. The FT is updated when a page is
migrated. First, the page number and prior owner GPU ID
are used to locate the fingerprint. Then, the old fingerprint is
deleted from the FT and replaced with the new one, which is
the concatenation of the page number and the new owner GPU
ID. Note that, the FT supports four parallel GPU ID lookups.
That is, four different GPU IDs are searched using one of two
hash functions. If the desired fingerprint is found, it only takes
one cycle. Otherwise, the four GPU IDs are searched using
the other hash function. Note also that, identical fingerprints
may store in the checked buckets, a random one is selected
and deleted, the desired fingerprint may not be deleted. A new
fingerprint is then inserted with the same page number but
different owner GPU ID, which will result in two or more
different owner GPU IDs for the same page number storing
in the FT. As a result, when a request looks up the FT, it
will return multiple owner GPU IDs. In the case, our design
chooses any one and forwards the request to that GPU.

When to borrow: When a request arrives at the host MMU,
the host MMU TLB and FT are searched in parallel. If the
request hits in the host MMU TLB, the translation is directly
returned to the requesting GPU. If the request misses in the
host MMU TLB but hit in the FT, we will check the number
of requests queued in the host MMU PW-queue and use
it as the indicator for the host MMU PT-walk contention.
Depending on the contention in host MMU PT-walk, two
scenarios may happen. First, we observe when the number of
queued requests is less than half of the PT-walk threads (we call
it as the forwarding threshold)3, a host MMU lookup is usually
faster than a remote lookup, considering the remote GMMU
contention and the network latency. In this scenario, we only
rely on the host MMU to perform PT-walk without involving
any remote GPUs. Second, if the number of queued requests is
more than half of the number of PT-walk threads, the request
is inserted into the host PW-queue but also forwarded to a
remote GPU according to the FT in order to short circuit the
PT-walk in the host MMU. When the desired translation is
found in a remote GPU, the remote GPU will directly send the
translation to the requesting GPU. The remote GPU will also
notify the host MMU of success or failure after it performs
the lookup. If the remote lookup succeeds, we check the host
MMU PW-queue, if the request still waits in the PW-queue,
the request is removed from the PW-queue to reduce the PT-
walk contention. On the other hand, if the remote lookup fails
due to the false positive in FT, the request will be discarded
since the pending request has been sent to the host MMU
PT-walk. Note that, it can happen that both host MMU and
successful remote lookup will send the desired translation to the
requesting GPU. However, the Trans-FW ensures that only the
early returned translation will be used, and the latter one will
be discarded. Note also that, in practice, we do not see many
of these cases happen. This is because the queuing latency

3We also evaluate our approach with different forwarding thresholds (i.e.,
the number of queued requests) in Section V-B

of the host PW-queue is generally large. In most cases, the
host MMU will receive the forwarding GPU message and the
request is removed from the host MMU PW-queue.

D. Putting All Together

Figure 10 illustrates the lookup procedure in Trans-FW.
Specifically, when a translation request misses in GPU local L2
TLB, the request is checked in the Pending Request Table (A).
If the request hits in the PRT, GMMU PT-walk is performed
(B). Otherwise, the request is sent to the UVM driver and
handled by the host MMU (C). When the request arrives at
the host MMU, the host MMU TLB (D) and Forwarding Table
(E) are searched in parallel. If the request hits in the host
MMU TLB, the translation is returned to the requesting GPU.
If the request misses in the host MMU TLB, PT-walk in host
MMU is performed (F). Depending on the number of queued
requests in the host MMU, the request is forwarded to the
corresponding remote GPU (G) indicated by the FT. After
remote GPU performs the lookup, the translation returns to
the host MMU (H) as well as to the requesting GPU(J). The
requesting GPU uses the translation either returned from the
local GMMU, host MMU PT-walks (I), or received from the
remote GPU (J) accordingly.

E. Hardware Overhead

The sizes of PRT and FT are determined by the fingerprint
size (f) in Cuckoo filter and the number of fingerprints. The
fingerprint size is determined by the bucket size (b) and desired
false positive rate (ε). A small fingerprint size minimizes the
hardware overheads but increases the false positive rate, which
reduces the performance gains. On the other hand, a large
fingerprint size is beneficial to overall performance but suffers
from hardware overheads. We choose 0.1% and 0.2% false
positive rates for PRT and FT to strike a balance between
performance and hardware overheads. Taking false positive
rate of 0.2% as an example, we show the fingerprint size
calculation below. According to [28], when the targeted false
positive rate equals to 0.2%, two entries per bucket minimizes
space. Therefore, the bucket size is 2 in this case. To retain
the target false positive rate ε , the minimal fingerprint size
required is approximate: f ≥ log2(1/ε)+ log2(2b). Therefore,
with a 2-bucket size, a false positive rate of 0.2% would require
∼ 9 + 2 = 11 bits for a fingerprint.

In our design, the Cuckoo filter in Forwarding Table (FT)
has a total of 2000 fingerprints. We mask the last three bits of
the virtual address so that eight pages can map to the same
fingerprint. The bucket size is two. Therefore, each fingerprint is
11 bits with 0.2% predefined false positive probability. The total
size of the FT is 2000×11/8/1024 = 2.68KB. The Pending
Request Table (PRT) is designed with 500 fingerprints for each
GMMU. Eight pages map to the same fingerprint. The bucket
size is four. Therefore, each fingerprint is 13 bits with 0.1%
predefined false positive probability. The total size of the PRT
is 500×13/8/1024= 0.79KB. We use CACTI [72] to estimate
the areas and the results show that PRT and FT are 1.01%
and 1.95% compared to the areas of GPU L2 TLB and host

MMU TLB, respectively. Note that, using the same area for
large host MMU TLB cannot achieve equivalent performance
improvement (we show the impact of host MMU TLB size in
Section V-B).

V. EVALUATION

In this section, we evaluate Trans-FW using MGPUsim [69].
The detailed simulation configurations and the applications
are the same as in our characterization (listed in Table II and
Table III). We use application end-to-end execution time to
compute the normalized performance.

A. Overall Performance

0
0.5

1
1.5

2
2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Trans-FW
Fig. 11. Normalized performance of Trans-FW.

Figure 11 shows the overall performance improvements
of Trans-FW normalized to the baseline. Trans-FW achieves
an average of 53.8% performance improvement across 10
applications. The performance improvements are significant for
those applications with high PFPKI (shown in Table III). For
example, MT achieves over 2× over the baseline. In contrast,
the performance improvements of FIR and AES are marginal.
This is because these two applications are compute-intensive
and the page fault latency can be hidden by the light-weight
context switching in GPUs. Also, these two applications have
few page sharing and less local page faults. As such, these
two applications are insensitive to page fault latencies.

0
0.2
0.4
0.6
0.8

1

MT MM PR ST KM Conv2d SC Im2col AES FIR

Pe
rc

en
ta

ge

PW-cache miss Local PW-queue
Host MMU PW-queue Page fault w/o page migration

Fig. 12. The reduced percentage of each latency component in Figure 3.

0
0.2
0.4
0.6
0.8

1

MT MM PR ST KM Conv2d SC Im2col AES FIR

H
it

ra
te

Baseline GMMU Trans-FW GMMU
Baseline host MMU Trans-FW host MMU+remote

Fig. 13. PW-cache hit rates at levels L2 and L3 in baseline and Trans-FW.

To understand the reasons behind the performance im-
provements, we plot the percentage reduction of each latency
component quantified in Figure 3. One can make the following
observations. First, Trans-FW significantly reduces the PW-
queue waiting time by an average of 95.8% and 79.8%
in GMMU and host MMU, respectively. The reductions in
PW-queue waiting time directly translate to performance
improvements. Second, Trans-FW reduces the latency of
address translation parts of handling local page faults by 43.4%.
Specifically, for 8 applications (except AES and FIR) that have
substantial page sharing, our approach reduces the latency up

to 53.3%. This is because page sharing among GPUs provides
opportunities for local faults to be served by remote GPUs,
thereby reducing page fault latency. Third, Trans-FW also
reduces the latency caused by PW-cache misses. We also show
average hit rates at L2 and L3 levels of both GMMU PW-
cache and host MMU PW-cache in Figure 13. Note that, the
host MMU PW-cache hits comprise the remote hit enabled by
Trans-FW. As shown in Figure 13, compared to the baseline
host MMU PW-cache L2 and L3 hit rates in Figure 6, Trans-
FW achieves a higher hit rate. This is because the remote
GPU has recently accessed the requested page, and a longer
translation prefix is available in the remote PW-cache. However,
the hit rate of GMMU PW-cache in Trans-FW is slighter lower
than the baseline. This is because when serving remote requests,
the newly inserted entry causes the local PW-cache thrashing.
Overall, Trans-FW improves the hit rates of PW-cache and
achieves latency reduction caused by PW-cache misses.

0
0.2
0.4
0.6
0.8

1

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR
Ave

.Pe
rc

en
ta

ge
 o

f
re

pl
ic

at
ed

 P
T-

W
al

k
Fig. 14. Percentage of replicated PT-walk to all host MMU PT-walk.

Recall that, when the number of queued requests in the
host MMU PW-queue reaches a threshold, requests waiting
in the host MMU PW-queue will also be forwarded to the
remote GPU. This generates replicated PT-walk requests in
the host MMU and the remote GMMU. Figure 14 shows
the percentage of replicated PT-walk requests introduced by
our approach to all host MMU PT-walk requests. One can
observe that, our approach generates an average of 22.6% of
replicated PT-walk requests to host MMU and remote GMMU.
However, we want to emphasize that these additional PT-walk
requests do not necessarily increase the overall total number
of PT-walk memory accesses. The reasons are two-fold. First,
short-circuiting in the host MMU allows the PT-walk requests
to benefit the remote GPU’s PW-cache. In our results, 65%
of those replicated requests (i.e., 22.6%) in host MMU are
eliminated before they incur any memory accesses because the
translation is resolved by the remote GPU. Second, although
those additional PT-walk requests cause 13.4% of additional PT-
walk memory accesses in the GMMU (percentage calculated by
the number of additional PT-walk memory accesses dividing the
total GMMU PT-walk memory accesses), we short-circuit the
local GMMU PT-walk for potential local page faults, which
reduces an average of 49.6% of the total GMMU PT-walk
memory accesses. Therefore, the total number of PT-walk
memory accesses in GMMU is reduced by 36.2% (49.6%
minus 13.4%) compared to the baseline. In summary, our
approach reduces the total PT-walk memory accesses in both
GMMU and host MMU.

B. Sensitive Study
Forwarding threshold: Recall that, in our configuration of

Trans-FW, the forwarding threshold is set to half of the PT-walk

0
0.5

1
1.5

2
2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Forward threshold (xPT-walk threads)

0 0.5 1 2

Fig. 15. Remote forwarding threshold.

threads (Section IV-C). That is, when the number of queued
requests exceeds half of the number of PT-walk threads, the
request is forwarded to the remote GPU. In this study, we
evaluate the performance impact under different forwarding
thresholds in Figure 15. First, when the forwarding threshold
is set to 0 (i.e., the request is forwarded right away when
there are no immediate available PT-walk threads), the average
performance improvement is 51.4% over the baseline, which
is 2.4% lower than setting the forwarding threshold equal
to 0.5. This is because it introduces more contention in the
remote GPU PT-walk. Second, the performance improvement
decreases as the threshold increases. The results show an
average performance improvement of 41.0% and 16.7% when
thresholds are set to 1 and 2. The main reason behind this is
the increasing queuing time of host PW-queue.

0
0.5

1
1.5

2
2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

(250, 1000) (500, 2000)
(750, 3000) (1000, 4000)

Fig. 16. The performance of Trans-FW with different sizes of PRT and FT
normalized to the baseline execution. The (x,y) on the legend indicates (size
of PRT, size of FT).

FT and PRT size: We evaluate the performance of Trans-
FW under different FT and PRT sizes in Figure 16. When PRT
is 250 entries (i.e., fingerprints) and FT is 1000 entries (i.e.,
fingerprints), the average performance improvement is 46.3%
on average. This is 7.5% lower than the default sizes (i.e., 500 in
PRT and 2000 in FT). This is because more pages are mapping
into the same fingerprints with smaller table sizes, which causes
a higher false positive rate and results in more additional
latency. When PRT and FT sizes are increased to 1000 and
4000 fingerprints, the average performance improvement is
slightly higher than the default size. Considering the hardware
overhead, we use 500 and 2000 as our configuration.

0
0.5

1
1.5

2
2.5

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR
Ave

.
MT

MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR
Ave

.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Fig. 17. Performance of Trans-FW with 8 and 16 GPUs. Results are normalized
to 8-GPU and 16-GPU baseline, respectively.

Number of GPUs: We evaluate Trans-FW in 8-GPU and
16-GPU systems to show its scalability. Note that, for a fair
comparison, when we increase the number of GPUs, we
do not increase the application input size. Figure 17 shows
the performance of Trans-FW with 8 GPUs and 16 GPUs
normalized to the baseline with 8 GPUs and 16 GPUs. We

observe average improvements of 50.5% and 46.1% in 8 GPUs
and 16 GPUs, respectively. The performance improvement is
reduced as the number of GPUs increases. This is because, with
more GPUs, more page faults will be generated and sent to
host MMU due to the more frequent page sharing across GPUs,
causing severer contention in the host MMU. Accordingly, the
page faults handling time increases in the host MMU.

0

0.5

1

1.5

(8,16) (16,16) (16,32) (32,32) (32,64) (64,128)

No
rm

al
iz

ed
pe

rfo
rm

an
ce

Baseline Trans-FW
Fig. 18. The performance of baseline and Trans-FW with different numbers
of PT-walk threads normalized to the baseline execution. The (x,y) on the
x-axis indicates (# of PT-walk threads in GMMU, # of PT-walk threads in
host MMU).

Page table walk (PT-walk) threads: We evaluate Trans-
FW under different numbers of PT-walk threads. Figure 18
shows the performance results. All the results are normalized
to baseline execution with four-threaded PT-walk in GMMU
and eight-threaded PT-walk in host MMU. One can make
the following observations. First, Trans-FW outperforms the
baseline in all configurations, achieving an average performance
improvement of 56.8%. Second, increasing the number of PT-
walk threads improves the performances in both the baseline
and Trans-FW. This is because the PW-queue waiting time is
effectively reduced, and the baseline benefits more from the
increasing PT-walk. Finally, Trans-FW with fewer PT-walk
threads achieves higher performance than baseline with more
PT-walk threads. For example, Trans-FW (second bar) in (8,16)
configuration outperforms the baseline (first bar) in (64,128)
configuration by 13.4%. This is because Trans-FW not only
reduces the PW-queuing latency, but also reduces the PW-cache
miss penalty and the unnecessary PT-walk latency caused by
local page faults. This also indicates that simply employing a
large number of PT-walk threads in the baseline cannot achieve
comparable performance with our approach.

0
0.5

1
1.5

2
2.5

MT
MM PR ST KM

Conv2d SC
Im

2c
ol

AES FIR
Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce 4-level page table

Fig. 19. Performance of Trans-FW with 4-level page table normalized to
baseline with 4-level page table.

4-level page table: We evaluate the performance when using
a 4-level page table in both baseline and Trans-FW (shown
in Figure 19). The results indicate that Trans-FW yields an
average of 49.5% performance improvement over the baseline.

Host MMU configuration: Next, we evaluate Trans-FW us-
ing different MMU configurations. First, we employ a larger
host MMU TLB size with 4096 entries (64-way and 64 sets)
compared to our main results using 2048 entries in Table II with
64-way and 32 sets. Figure 20 (a) shows that Trans-FW achieves

0
0.5

1
1.5

2
2.5

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR Ave
.

N
or

m
al

iz
ed

pe

rf
or

m
an

ce

4096 TLB

0
0.5

1
1.5

2
2.5

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR Ave
.

N
or

m
al

iz
ed

pe

rf
or

m
an

ce

256 PW-cache

0
0.5

1
1.5

2
2.5

MT
MM PR ST KM

Con
v2

d SC
Im

2c
ol

AES FIR Ave
.

N
or

m
al

iz
ed

pe

rf
or

m
an

ce

512 PW-cache(a) (b) (c)
Fig. 20. Performance of Trans-FW with different host MMU configurations normalized to baseline
with corresponding configurations.

0.8
1

1.2
1.4
1.6

1 1.5 2 3 4 5 6 7 8

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Remote access latency (xDRAM latency)
Trans-FW

Fig. 21. Remote access latency.

54.2% performance improvement over the baseline using 4096
entry TLB, indicating that our approach is scalable with large
TLBs. We observe the performance improvement is similar to
2048 entry TLB capacity. This is because a large TLB does
not help due to the TLB shootdown caused by page migration.
Therefore, the size of host MMU TLB has less impact on our
approach, and simply increasing host MMU TLB size cannot
bring comparable performance as ours in multi-GPU system.
Second, we evaluate Trans-FW under different host MMU PW-
cache sizes. Figure 20 (b) and (c) show the performance of
Trans-FW with 256-entry and 512-entry host MMU PW-cache
normalized to baseline execution with 256-entry and 512-entry
host MMU PW-cache, respectively. We observe the average
performance improvements of Trans-FW are 48.9% and 43.1%
over the corresponding baselines. This is because a larger host
MMU PW-cache does not help much in reducing long host
PW-queue queuing latency. Therefore, Trans-FW still achieves
significant performance improvement compared to the baseline.

Remote access latency: We evaluate Trans-FW under
different remote GPU access latencies to show the cross-over
point when accessing a remote GPU compared against invoking
the PT-walk in the host MMU. Figure 21 shows the performance
of Trans-FW when varying the GPU interconnection latency
to multiple times of GPU memory latency normalized to
baseline execution. One can observe that, the performance
improvement of Trans-FW decreases when the remote access
latency increases. In particular, when the remote latency is
beyond 8× of the GPU local memory latency, the performance
of accessing the remote GPU is almost the same as accessing
the page table in the host MMU. This is because, at this point,
the remote access latency is comparable to the waiting latency
of PT-walk. Note that, the remote latency is typically 100-150
cycles as employed by prior works [2], [30], [32], we use 150
cycles in the main evaluation.

C. Different PW-cache Structure

0
0.5
1

1.5
2

2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

STC
Fig. 22. Performance of Trans-FW with STC structure normalized to baseline
with STC.

In both the baseline and our approach, we adopt the UTC
PW-cache organization. However, our approach is not tied to
a specific PW-cache organization. To verify, we evaluate the
performance impact when employing a different PW-cache
design. Specifically, we implement Split Translation Cache

(STC) [22]. In STC, entries from different levels of page table
are stored in separate caches. The configuration of STC is as
follows: 16 entries for L5, 16 entries for L4, 32 entries for L3,
and 64 entries for L2 [22]. The results indicate an average of
54.0% performance improvement of our approach with STC
normalized to the baseline STC, which is slightly higher than
the UTC PW-cache design used in our main results. This is
because each level of cache does not compete with each other
in STC, and more low-level PW-caches can be saved, thereby
reducing the number of memory accesses during the page table
walk. Overall, Trans-FW works with different PW-caches and
is able to yield significant performance improvements.

D. Page Replication

0
0.5
1

1.5
2

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Trans-FW+page replication
Fig. 23. Performance of Trans-FW with page replication normalized to baseline
with page replication.

The unified virtual memory in modern GPU systems supports
read-replication, in which a page is allowed to be accessed and
replicated in multiple GPUs’ physical memory with different
physical addresses [54]. When a local page fault happens,
a read-only page is replicated in the faulting GPU physical
memory. To ensure consistency, when a GPU performs a write
operation, it invalidates all the page replications in other GPUs,
similar to cache coherence protocol. An ESI (Exclusive, Shared,
and Invalid) memory coherency protocol is employed. When a
write to a read-replicated page (S state) occurs, a protection
fault is triggered. The GMMU dispatches an interrupt to the
CPU to invoke the fault handler. The handler then invalidates
the page from all other owners and shoots down all stale
TLB entries in both the host MMU and GMMU except for
the GPU that executes the write operation. Once the GPU
receives the completion message of fault handling, it will re-
execute the write. We evaluate Trans-FW under read-replication.
Figure 23 illustrates the performance of our approach with
page replication normalized to baseline execution with page
replication. We observe an average of 28.4% performance
improvement brought by Trans-FW. Comparing the results with
the performance in Figure 11, the improvement is less. This is
because that read replication effectively reduces the number
of local page faults and potentially improves the PW-cache
hit rates. However, for some applications (e.g., MT, Conv2d,
and Im2col), our approach still significantly outperforms the
baseline read-replication. To understand the reason behind,

0

0.25

0.5

0.75

1

Conv2d MT Im2col ST KM MM PR SC AES FIR

Pe
rc

en
ta

ge
 o

f
re

ad
/w

rit
e

of
 a

ll
ac

ce
ss

es

read write
Fig. 24. Percentage of reads and writes to all shared pages.

we quantify the read operations and writing operations to
shared pages across GPUs in Figure 24. We observe that
read-replication has marginal improvements for write-intensive
applications due to the frequent write-invalidation (e.g., MT,
Conv2d, and Im2col). In contrast, our approach is able
to improve applications exhibiting both write-intensive and
read-intensive page sharing.

E. Remote Mapping

0
0.5
1

1.5
2

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Trans-FW
Fig. 25. Performance of Trans-FW with remote mapping normalized to
baseline with remote mapping.

Our discussion so far leverages the on-touch migration which
is the default scheme in modern GPUs [51], [54]. UVM also
supports another page migration scheme: remote mapping. That
is, a GPU can establish a direct mapping and access the remote
GPU’s physical memory without actually migrating the page.
Instead of migrating a page, the first access to a page that is
not locally available will generate a page fault and then create
a corresponding page table entry that points to the page in
remote GPU memory. Pages are only migrated after reaching
accessing thresholds. When a page migration happens, the
translations that map to that page from different GPUs have
to be invalidated to ensure translation coherence across GPUs.
We evaluate Trans-FW with remote mapping. Specifically, we
leverage the access counter as in recent NVIDIA GPUs [53],
[54] to determine the page migration. Figure 25 shows the
performance of our approach with remote mapping normalized
to baseline execution with remote mapping. The results indicate
that Trans-FW achieves an average of 39.3% performance
improvement. This demonstrates Trans-FW works with remote
mapping and improves the performance when using remote
mapping. The improvement is less compared to the results
in Figure 11. The main reason is that remote mapping helps
reduce the number of local page faults and the amount of page
thrashing, especially for applications with substantial sharing
(e.g., KM, SC). As a result, the host MMU PT-walk contention
is reduced.

F. UVM-Driver Handled Far Faults

We implement and evaluate Trans-FW on UVM-driver based
far fault handling. The fault handling is modeled the same as
described in Section II-B. We implement Forwarding Table
in CPU memory and use UVM-driver to handle the FT table
lookup. Figure 26 shows the performance of Trans-FW on

0
0.5

1
1.5

2
2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Fig. 26. Performance of Trans-FW on UVM-driver handled far faults
normalized to UVM-driver based far faults handling.

UVM-driver handled far faults in four GPUs. The results
are normalized to the UVM-driver handled far faults. One
can observe that, Trans-FW achieves an average of 68.6%
performance improvement over the corresponding driver-based
far fault handling. This is because our approach i) bypasses
the unnecessary PT-walk in the GMMU caused by far faults,
and ii) mitigates the UVM-driver handling contention, thereby
reducing the far faults handling overhead. The results indicate
that optimizations brought by Trans-FW also take effect in
UVM-driver based multi-GPU systems.

G. Adopting Large-sized Pages

0
0.5
1

1.5
2

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

2MB
Fig. 27. Performance of Trans-FW with 2MB page normalized to baseline
with 2MB page.

We next evaluate Trans-FW with 2MB page size. Figure 27
shows the performance of Trans-FW normalized to the baseline
execution with 2MB page size. Trans-FW achieves an average
of 38.6% performance improvement. This is less compared
to the 4KB page size results. The reason is that, in the
baseline execution, choosing a large page size effectively
increases the L2 TLB hit rate, thus mitigating the contention in
GMMU PT-walk. However, it is important to note that Trans-
FW still achieves substantial performance improvements. This
is because, by short-circuiting the PT-walk in GMMU and
the PT-walk in the host MMU, Trans-FW is able to further
reduce the PT-walk latency. Besides, although adopting large-
sized pages reduces local page faults, it increases false sharing
and causes extra inter-GPU page faults when a large page is
frequently shared among different GPUs.

H. Comparison to PW-cache Prefetching

0
0.5
1

1.5
2

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Trans-FW Trans-FW+ASAP
Fig. 28. Comparison to ASAP [46] PW-cache prefetching.

PW-cache prefetching is another well-known technique to
improve the address translation efficiency by reducing the
number of page walks. We compare Trans-FW with the state-
of-the-art ASAP [46] address translation prefetching. The
ASAP prefetching focuses on prefetching lower levels (i.e.,

L2) of page table during page table walk. In our comparison
experiments, we employ ASAP in both GMMU PT-walk and
host MMU PT-walk. Figure 28 shows the performance of Trans-
FW and Trans-FW+ASAP normalized to the ASAP. We make
the following observations. First, Trans-FW outperforms ASAP
by an average of 38.4%. The reason is that ASAP does not
mitigate PT-walk contention nor page fault handling latency. In
contrast, our Trans-FW short circuits PT-walk caused by local
page faults, mitigates the contention in PT-walk, and reduces
the latency of handling page faults. Second, our approach can
be combined with PW-cache prefetching to further improve the
address translation efficiency. Specifically, Trans-FW+ASAP
achieves 45.2% improvement over the ASAP. This is because
the PW-cache miss latency is further reduced when combined
Trans-FW and ASAP. In summary, the results demonstrate that
the proposed Trans-FW is flexible to work with PW-cache
prefetching strategies.

I. Combined with TLB Optimization

0
0.5
1

1.5
2

2.5

MT MM PR ST KM Conv2d SC Im2col AES FIR Ave.

N
or
m
al
iz
ed

pe
rf
or
m
an
ce

Trans-FW+Least-TLB
Fig. 29. Performance of Trans-FW when combined with Least-TLB normalized
to Least-TLB [42].

To show the proposed Trans-FW can achieve better perfor-
mance when combined with prior TLB optimizations, we apply
Trans-FW to one of the state-of-the-art TLB optimizations –
least-TLB [42]. Least-TLB focuses on improving TLB reach
by eliminating translation redundancy and mitigating TLB
contention in multi-GPU. Figure 29 shows that Trans-FW+least-
TLB achieves a 57.9% performance improvement compared
to using the least-TLB alone. In short, we demonstrate that
Trans-FW is complementary to TLB optimizations and can
bring additional performance benefits.

J. ML application

0

0.5

1

1.5

VGG16 ResNet18

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Fig. 30. Performance
of Trans-FW with ML
applications.

We also evaluate Trans-FW using real-
world machine learning models (VGG16
and ResNet18) in data parallelism train-
ing. The results in Figure 30 indicate
that Trans-FW achieves a performance
improvement of 21.4% on VGG16 and
34.6% on ResNet18 normalized to their
baseline executions. This demonstrates

that the proposed Trans-FW also works in real multi-GPU
training scenarios.

VI. RELATED WORK

TLB optimizations: The literature of computer architecture
research has substantial prior works focusing on optimizing
TLB performance in CPUs, GPUs, and accelerators [4], [5],
[14], [18], [19], [37], [61]. These works can be divided into
software-oriented TLB optimizations [10], [17], [23], [40],

[41], [78] and hardware-oriented optimizations [12], [62],
[63], [67], [74], [79]. Jaleel et al. [36] investigated translation
memorization in DRAM and leveraged the last-level cache
to keep the TLB entries. Tang et al. [71] improved the
TLB reach in GPU through hardware-supported compression.
Ausavarungnirun et al. [13] leveraged L2-TLB bypassing to
reduce thrashing for concurrent multi-application executions.
Compared to all these TLB optimization efforts, our approach
focuses on optimizing page table walking in multi-GPUs, which
is a more important performance bottleneck. Additionally,
our approach is orthogonal or complementary to most TLB
optimization and can bring further improvements. To this end,
we propose Trans-FW. Figure 9 shows the high-level overview
of our design. We evaluated our work with a state-of-the-art
TLB optimization [42]. The results indicate that our approach
can further improve the address translation efficiency in multi-
GPU executions.

Page table walk optimizations: To accelerate the page table
walk, prior works have explored the designs of MMU cache,
page migration, and prefetching techniques [3], [14], [15], [25],
[45], [46], [49], [55], [58], [66]. Pratheek et al. [64] proposed
a dynamic page walk stealing to reduce PTW contention under
multi-tenancy. Bhattacharjee [20] proposed a coalescing and
sharing technique to reduce MMU cache misses. Achermann
et al. [1] leveraged page table replication and migration to
mitigate NUMA effects on page table walks. Most of these
works focus on single CPU or single GPU execution. In contrast,
our approach targets multi-GPU execution. We reveal that page
sharing in multi-GPU execution is the root source causing
PT-walk queuing and local page faults. The proposed approach
leverages frequent page sharing and eliminates the performance
burdens. Moreover, as we discussed in Section V-H, our
approach is compatible with existing works (e.g., PW-cache
prefetching) in single GPU to further improve the address
translation efficiency.

VII. CONCLUSION

In this paper, we comprehensively and systematically studied
the page table walk efficiency in multi-GPU executions. Our
characterization indicates that there are three major latency
bottlenecks in the page table walk. We proposed Trans-FW that
leverages page sharing and remote forwarding to dynamically
and automatically short circuit the page table walk in both
GMMU and host MMU in multi-GPUs. Our experimental
results show that Trans-FW significantly improves the overall
performance by an average of 53.8%. We also compared
with different PW-cache structure, page replication, large page,
PW-cache prefetching, and TLB optimization to indicate the
scalability, flexibility, and compatibility of the proposed design.

ACKNOWLEDGMENT

The authors would like to thank the anonymous HPCA
reviewers for their constructive feedback and suggestions. This
work is supported in part by NSF grants #2011146, #2154973,
#1725657, #1910413, and a startup funding from the University
of Pittsburgh.

REFERENCES

[1] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe, and J. Gandhi,
“Mitosis: Transparently self-replicating page-tables for large-memory
machines,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 283–300.

[2] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler,
“Page placement strategies for gpus within heterogeneous memory
systems,” in Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2015, pp. 607–618.

[3] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
page management for two-tiered main memory,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 631–644.

[4] J. Ahn, S. Jin, and J. Huh, “Revisiting hardware-assisted page walks for
virtualized systems,” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA), 2012, pp. 476–487.

[5] J. Ahn, S. Jin, and J. Huh, “Fast two-level address translation for
virtualized systems,” IEEE Transactions on Computers, vol. 64, no. 12,
pp. 3461–3474, 2015.

[6] T. Allen and R. Ge, “Demystifying gpu uvm cost with deep runtime and
workload analysis,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 141–150.

[7] T. Allen and R. Ge, “In-depth analyses of unified virtual memory system
for gpu accelerated computing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[8] AMD. (2015) AMD APP SDK OpenCL Optimization Guide.
[9] AMD. (2015) AMD Radeon R9 Series Gaming Graphics Cards with

High- Bandwidth Memory.
[10] N. Amit, “Optimizing the TLB shootdown algorithm with page access

tracking,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, Jul. 2017, pp. 27–39.
[Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/amit

[11] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module
gpus for continued performance scalability,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 320–332, 2017.

[12] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: A gpu memory manager
with application-transparent support for multiple page sizes,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2017, pp. 136–150.

[13] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu, “Mask: Redesigning the gpu memory
hierarchy to support multi-application concurrency,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’18.
New York, NY, USA: ACM, 2018, pp. 503–518. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173169

[14] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip,
don’t walk (the page table),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: ACM, 2010, pp. 48–59. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[15] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin: Hardware-
software support for efficient page migration in multi-gpu systems,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2020, pp. 596–609.

[16] T. Baruah, Y. Sun, S. A. Mojumder, J. L. Abellán, Y. Ukidave,
A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Valkyrie: Leveraging inter-tlb
locality to enhance gpu performance,” in Proceedings of the ACM
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 455–466. [Online]. Available:
https://doi.org/10.1145/3410463.3414639

[17] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA

’13. New York, NY, USA: ACM, 2013, pp. 237–248. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485943

[18] S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee, “Scalable
distributed last-level tlbs using low-latency interconnects,” in 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2018, pp. 271–284.

[19] A. Bhattacharjee and M. Martonosi, “Characterizing the tlb behavior
of emerging parallel workloads on chip multiprocessors,” in 2009 18th
International Conference on Parallel Architectures and Compilation
Techniques, 2009, pp. 29–40.

[20] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, 2013, pp. 383–394.

[21] L. Caucci and L. R. Furenlid, “GPU programming for biomedical
imaging,” in Medical Applications of Radiation Detectors V, H. B.
Barber, L. R. Furenlid, and H. N. Roehrig, Eds., vol. 9594, International
Society for Optics and Photonics. SPIE, 2015, pp. 79 – 93. [Online].
Available: https://doi.org/10.1117/12.2195217

[22] I. Corporation. (2008) Tlbs, paging-structure caches and their invalidation.
[23] G. Cox and A. Bhattacharjee, “Efficient address translation for

architectures with multiple page sizes,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 435–448. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037704

[24] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in GPGPU-3: Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: Association
for Computing Machinery, 2010, p. 63–74. [Online]. Available:
https://doi.org/10.1145/1735688.1735702

[25] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: a holistic approach to
memory placement on numa systems,” ACM SIGPLAN Notices, vol. 48,
no. 4, pp. 381–394, 2013.

[26] S. Dong and D. Kaeli, “Dnnmark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63–72.

[27] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), June 2015, pp. 92–104.

[28] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the
10th ACM International on Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 75–88. [Online].
Available: https://doi.org/10.1145/2674005.2674994

[29] D. Foley and J. Danskin, “Ultra-performance pascal gpu and nvlink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[30] D. Ganguly, Z. Zhang, J. Yang, and R. Melhem, “Adaptive page
migration for irregular data-intensive applications under gpu memory
oversubscription,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 451–461.

[31] T. D. Hartley, U. Catalyurek, A. Ruiz, F. Igual, R. Mayo, and M. Ujaldon,
“Biomedical image analysis on a cooperative cluster of gpus and
multicores,” in ACM International Conference on Supercomputing 25th
Anniversary Volume. New York, NY, USA: ACM, 2014, pp. 413–423.
[Online]. Available: http://doi.acm.org/10.1145/2591635.2667189

[32] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “Neummu:
Architectural support for efficient address translations in neural
processing units,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1109–1124. [Online].
Available: https://doi.org/10.1145/3373376.3378494

[33] Intel. (2017) 5-Level Paging and 5-Level EPT. [Online]. Available:
https://mobt3ath.com/uplode/books/book-51381.pdf

[34] Intel. (2018) The Future of Core, Intel GPUs, 10nm, and Hybrid
x86. [Online]. Available: https://www.anandtech.com/show/13699/intel-
architecture-day-2018-core-future-hybrid-x86/5

[35] J. Andrew Rogers. (2015) MetroHash: Faster, Better Hash Functions.
[Online]. Available: https://github.com/jandrewrogers/MetroHash

[36] A. Jaleel, E. Ebrahimi, and S. Duncan, “Ducati: High-performance
address translation by extending tlb reach of gpu-accelerated systems,”
ACM Trans. Archit. Code Optim., vol. 16, no. 1, Mar. 2019. [Online].
Available: https://doi.org/10.1145/3309710

[37] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for tlb
prefetching: an application-driven study,” in Proceedings 29th Annual
International Symposium on Computer Architecture, 2002, pp. 195–206.

[38] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 66–78. [Online].
Available: http://doi.acm.org/10.1145/2749469.2749471

[39] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, Batch-Aware Unified
Memory Management in GPUs for Irregular Workloads. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1357–1370.
[Online]. Available: https://doi.org/10.1145/3373376.3378529

[40] M. K. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, “Latr: Lazy translation coherence,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018, pp. 651–
664. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173198

[41] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel,
“Coordinated and efficient huge page management with ingens,”
in Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’16. Berkeley, CA,
USA: USENIX Association, 2016, pp. 705–721. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3026877.3026931

[42] B. Li, J. Yin, Y. Zhang, and X. Tang, “Improving address translation
in multi-gpus via sharing and spilling aware tlb design,” in MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 1154–1168.

[43] X. Long, X. Gong, and H. Zhou, “Deep learning based data prefetching
in cpu-gpu unified virtual memory,” arXiv preprint arXiv:2203.12672,
2022.

[44] X. Long, X. Gong, and H. Zhou, “An intelligent framework for
oversubscription management in cpu-gpu unified memory,” arXiv preprint
arXiv:2204.02974, 2022.

[45] Z. Ma, Y. Tan, H. Jiang, Z. Yan, D. Liu, X. Chen, Q. Zhuge, E. H.-M. Sha,
and C. Wang, “Unified-tp: A unified tlb and page table cache structure for
efficient address translation,” in 2020 IEEE 38th International Conference
on Computer Design (ICCD). IEEE, 2020, pp. 255–262.

[46] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: ACM, 2019, pp. 1023–1036. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358294

[47] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the socket: Numa-aware gpus,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, 2017, pp. 123–135.

[48] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 69:1–69:35, Jul.
2015. [Online]. Available: http://doi.acm.org/10.1145/2788396

[49] H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “Gps: A
global publish-subscribe model for multi-gpu memory management,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 46–58.

[50] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and
A. W. Moore, “Understanding pcie performance for end host networking,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 327–341.

[51] Nikolay Sakharnykh. (2017) Unified Memory on
Pascal and Volta. [Online]. Available: http://on-
demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-
sakharnykh-unified-memory-on-pascal-and-volta.pdf

[52] NVIDIA. (2018) DB2 Launch Datasheet Deep Learning Letter WEB.
[Online]. Available: https://www.scribd.com/document/336084072/61681-
DB2-Launch-Datasheet-Deep-Learning-Letter-WEB-NVidia-Deep-
Learning-Box#

[53] NVIDIA. (2022) NVIDIA Linux Open GPU Kernel Module
Source. [Online]. Available: https://github.com/NVIDIA/open-gpu-
kernel-modules

[54] NVIDIA Corp. (2018) Everything you need to
know about unified memory. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2018/presentation/s8430-
everything-you-need-to-know-about-unified-memory.pdf

[55] A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee, K. Gopinath,
and J. Gandhi, “Fast local page-tables for virtualized numa servers with
vmitosis,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 194–210.

[56] M. Parasar, A. Bhattacharjee, and T. Krishna, “Seesaw: Using superpages
to improve vipt caches,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 193–206.

[57] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), June 2017, pp. 444–456.

[58] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer, “Every
walk’sa hit: making page walks single-access cache hits,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 128–141.

[59] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing tlb
reach by exploiting clustering in page translations,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 558–567.

[60] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages
and lightweight memory management in virtualized environments: Can
you have it both ways?” in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec 2015, pp. 1–12.

[61] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:
Coalesced large-reach tlbs,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
45. USA: IEEE Computer Society, 2012, p. 258–269. [Online].
Available: https://doi.org/10.1109/MICRO.2012.32

[62] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support
for address translation on gpus: Designing memory management
units for cpu/gpus with unified address spaces,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14.
New York, NY, USA: ACM, 2014, pp. 743–758. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541942

[63] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of gpu lanes,” in 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), Feb
2014, pp. 568–578.

[64] B. Pratheek, N. Jawalkar, and A. Basu, “Improving gpu multi-tenancy
with page walk stealing,” in 2021 IEEE 27th International Symposium
on High Performance Computer Architecture (HPCA), 2021.

[65] J. Ryoo, M. Fan, X. Tang, H. Jiang, M. Arunachalam, S. Naveen, and
M. T. Kandemir, “Architecture-centric bottleneck analysis for deep neural
network applications,” in 2019 IEEE 26th International Conference on
High Performance Computing, Data, and Analytics (HiPC). IEEE, 2019,
pp. 205–214.

[66] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular gpu applications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018, pp. 180–192.

[67] S. Shin, M. LeBeane, Y. Solihin, and A. Basu, “Neighborhood-aware
address translation for irregular gpu applications,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018, pp. 352–363.

[68] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mccard-
well, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite for
cpu-gpu collaborative computing,” in 2016 IEEE International Symposium
on Workload Characterization (IISWC), 2016, pp. 1–10.

[69] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli,
“Mgpusim: Enabling multi-gpu performance modeling and optimization,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 197–209. [Online]. Available:
https://doi.org/10.1145/3307650.3322230

[70] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, R. Ubal, X. Gong,
S. Treadway, Y. Bao, V. Zhao, J. L. Abellán et al., “Mgsim+ mg-

mark: A framework for multi-gpu system research,” arXiv preprint
arXiv:1811.02884, 2018.

[71] X. Tang, Z. Zhang, W. Xu, M. T. Kandemir, R. Melhem, and
J. Yang, “Enhancing address translations in throughput processors via
compression,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
191–204. [Online]. Available: https://doi.org/10.1145/3410463.3414633

[72] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi,
“A comprehensive memory modeling tool and its application to the
design and analysis of future memory hierarchies,” in 2008 International
Symposium on Computer Architecture, 2008, pp. 51–62.

[73] G. Vavouliotis, L. Alvarez, V. Karakostas, K. Nikas, N. Koziris, D. A.
Jiménez, and M. Casas, “Exploiting page table locality for agile tlb
prefetching,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2021, pp. 85–98.

[74] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016, pp.
161–171.

[75] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“Superneurons: Dynamic gpu memory management for training deep
neural networks,” in Proceedings of the 23rd ACM SIGPLAN symposium
on principles and practice of parallel programming, 2018, pp. 41–53.

[76] J. Wei, J. Lu, Q. Yu, C. Li, and Y. Zhao, “Dynamic gmmu bypass
for address translation in multi-gpu systems,” in Network and Parallel
Computing, X. He, E. Shao, and G. Tan, Eds. Cham: Springer
International Publishing, 2021, pp. 147–158.

[77] C. Xie, F. Xin, M. Chen, and S. L. Song, “Oo-vr: Numa friendly
object-oriented vr rendering framework for future numa-based multi-gpu
systems,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 53–65. [Online].
Available: https://doi.org/10.1145/3307650.3322247

[78] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
Operating system support for contiguity-aware tlbs,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 698–710. [Online].
Available: http://doi.acm.org/10.1145/3307650.3322223

[79] H. Yoon, J. Lowe-Power, and G. S. Sohi, “Filtering translation
bandwidth with virtual caching,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 113–127.
[Online]. Available: https://doi.org/10.1145/3173162.3173195

[80] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining hw/sw mechanisms to improve numa performance of multi-
gpu systems,” in 2018 51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 2018, pp. 339–351.

