
Northup: Divide-and-Conquer Programming in Systems with

Heterogeneous Memories and Processors

Shuai Che *

cheshuai@gmail.com

Jieming Yin

Advanced Micro Devices, Inc.

jieming.yin@amd.com

Abstract—In recent years we have seen rapid development in
both frontiers of emerging memory technologies and accelerator
architectures. Future memory systems are becoming deeper and
more heterogeneous. Adopting NVM and die-stacked DRAM on
each HPC node is a new trend of development. On the other hand,
GPUs and many-core processors have been widely deployed in
today’s supercomputers. However, software for programming and
managing a system that consists of heterogeneous memories and
processors is still in its very early stage of development. How to
exploit such deep memory hierarchy and heterogeneous proces-
sors with minimal programming effort is an important issue to
address. In this paper, we propose Northup, a programming and
runtime framework, using a divide-and-conquer approach to map
an application efficiently to heterogeneous systems. The proposed
solution presents a portable layer that abstracts the system
architecture, providing flexibility to support easy integration of
new memories and processor nodes. We show that Northup out-
of-core execution with SSD is only an average of 17% slower
than in-memory processing for the evaluated applications.

Index Terms—accelerator, heterogeneous memory architecture,
programming framework, recursive execution

I. INTRODUCTION

The need for ever more computational power in HPC has

never stopped as researchers try to address deeper science

problems [1]. The design of future Exascale systems must

tackle many challenges. Among these issues, exploiting het-

erogeneity has become a hot research topic for years [1]–

[3]. Inside a machine node, heterogeneity originates from two

major sources: processing elements and memories. On the one

hand, systems with CPUs, GPUs, and FPGAs are ubiquitous;

and these compute elements exhibit dramatic disparities in

their compute capabilities. On the other hand, memory hier-

archy becomes deeper and more heterogeneous with multiple

memory nodes and layers, thanks to the development of die-

stacked memories [4], processors in memory (PIM), and non-

volatile memories (NVMs). These new memory technologies

also present diverse latency and capacity characteristics [5].

As a result, it is not surprising that designers will come up

with diverse heterogeneous design options. Moreover, these

architectures may be very challenging to program, including

using different APIs for different parts of computation and

memory management (e.g., CUDA, OpenCL). This leads

to complex, unportable, and hard-to-manage code. Thus, a

generic strategy for application development is needed and

the solution should adapt to diverse architectures.

To achieve efficient parallelism and data movement, we need

to rethink the design of today’s software stack and program-

* The work was performed while Shuai Che was at AMD.

ming model. To be specific, regardless how architectures are

designed, memory and storage are hierarchically organized

in multiple levels: from slow, large capacity to fast, small

capacity; and a processor (e.g., CPU, GPU, and FPGA) is

attached to a memory node and issues memory requests.

The only difference among system designs is the shape of

the overall system topology—this is also how programmers

usually view a system architecture. Based on this observation,

the entire system can then be abstracted in a hierarchical tree

structure and in natural synergy with the divide-and-conquer

way of problem solving. In other words, a large problem is

recursively decomposed into multiple sub-problems, and the

required data is moved along the tree edges from the slowest

storage, through faster memory, all the way to the caches of

processing elements. Parallel computation for the smallest data

decomposition is exploited with diverse accelerators at tree

leafs. In the end, the solutions of subproblems are combined

to generate the final result. A solution based on divide-and-

conquer has several benefits. First, an algorithm is constructed

in a way that can naturally map well to a system regardless of

its architectural topology. Second, the developed application

presents good portability (in terms of both code and perfor-

mance) as long as efficient runtime support is provided for

scheduling and load balancing. Once the code is written, it

should work across heterogeneous architectures.

To achieve the above goals, we present Northup, a program-

ming and runtime framework to support diverse heterogeneous

hardware components. In this work, we revisit how applica-

tions and algorithms should be developed to meet performance

as well as portability needs; we also address new challenges in

managing system heterogeneity (e.g., organization of heteroge-

neous compute and memory components, data movement, non-

unified memory management API). Northup is particularly

effective in dealing with various uncertainties as architectures

evolve rapidly. This paper makes the following contributions:

• We describe how Northup abstracts the system architec-

ture in an asymmetric, hierarchical tree structure, consist-

ing of both heterogeneous memory and accelerator nodes.

• We present a recursive programming style, mapping an

algorithm to the underlying tree-based system architecture

that is transparent to the programmer.

• We propose an API and runtime techniques to simplify

data movement and ensure code portability.

• We demonstrate the usefulness of Northup using a few

representative algorithms as case studies.

335

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00043



Core

L1

Core

L1

L2

CPU

L2

SIMD

L1 Scratchpad

SIMD

L1 Scratchpad

SIMD

L1 Scratchpad

GPU

Accelerators

FPGA

PIM cache Memory or I/O Controllers Active Storage

Die-stacked 
DRAM

DRAM Emerging NVM
(e.g., PCM, STT-RAM)

Flash Storage Disk

Applications

User-level Libraries

Operating System

Virtual
Memory 

Subsystem
(Region Mgr.)

File System
Block-based

Access

Device Drivers

Software Stack

Cores
(type 1)

Cores
(type n)

Mem 0

Mem 1

Mem 2

Mem n

Cores
(type 1)

Cores
(type n)

Mem 0 Mem 1 Mem n

Vertical Parallel

C C C C

mem mem mem

mem mem

mem

Hybrid

a) Hardware View b) Software View c) Abstract View
Fig. 1: An architecture consisting of heterogeneous memories and processors.

II. MOTIVATION

We first describe the recent development of heterogeneous

systems and associated challenges. This paper uses the words

“memory” and “storage” interchangeably–both referring to a

space where data is stored either permanently or temporarily.

Heterogeneous Memory Hierarchy: New memory tech-

nologies such as die-stacked DRAM [6] and NVM [5] provide

new memory characteristics and features. In the near future,

programmers may face the challenge of programming a rather

complex system consisting of diverse heterogeneous memory

components. Figure 1a) shows how such a system may look

like from a hardware point of view. Figure 1b) shows the

components involved in the software stack. In addition, con-

ceptually we can deem such a system in an abstract view as

shown in Figure 1c). At a high level, memory system has

become increasingly complicated in several aspects. Firstly,

the memory hierarchy design presents many alternatives, as a

level of memory can be used for backing store, for caching, or

for NUMA accesses in parallel with another level. Secondly,

different memory subsystems may present heterogeneity and

different characteristics. For example, a GPU may have its

own memory subsystem [7] (similarly for PIM and Active

Storage). Finally, the interfaces to manage these memories

can be very different, resulting in a non-trivial effort to

manage memory mapping and data movement. As a result, a

simple system abstraction and programming model is crucial

to programming heterogeneous systems.

Hardware versus Software-managed memory: Software-

managed memories can be controlled by the operating system,

compilers, user-level libraries, application programs or their

combinations. A typical memory organization has one or mul-

tiple “transitioning” levels as a division point for in-core and

out-of-core memory management. The selection of transition-

ing points has an important implication on how programmers

view the whole system, which in turn affects what hardware

features are exposed to software and the development of

software stack. Recent development in GPGPU and embedded

systems has reflected a trend that more memories are designed

to be software-managed. The goal is to provide programmers

more control and achieve high performance. Given increasing

number of memory levels, we envision that programmers will

take more responsibilities to deal with explicit data movement.

Application Portability: There have been different propos-

als treating new memories in different ways. For example,

stacked DRAM can be used as a high-bandwidth, hardware-

managed last-level cache [4]. Alternatively, it can be a part of

the physical memory space in parallel to DRAM and managed

by the OS [3]. Furthermore, memory can be exposed to

software in different ways. A design can treat the NVM as part

of physical address space (i.e., accessible through a load/store

hardware interface) [8], [9] or as fast storage [10]. In reality,

a system configuration is dependent on different requirements

and the compatibility to legacy software; however, there is

no general guidelines how to configure a system. This makes

application development a challenge because applications as-

suming one model may not be portable with another model.

Although works have been done to standardize the model

for specific areas [11], a holistic design approach is needed.

Since different types of systems are likely to coexist in future,

applications should be portable across platforms and exploit

different memory hierarchies efficiently.

Heterogeneous Compute: GPUs, FPGAs and other co-

processors demonstrate better compute efficiency for many

applications compared to CPUs. However, to fully utilize

them requires significant programming efforts, especially in

the presence of heterogeneous memories. One issue is that

different processors may not “see” the memory system in a

uniform way. For example, a GPU may only access its own

device memory in certain systems. There have been efforts to

improve this issue, but additional work remains to be done. Re-

cent development of HSA [2] allows host and device to share

the same virtual address space and supports the “a-pointer-

is-a-pointer” semantic. Also, initial work has been proposed

to allow GPU threads to directly access files and I/Os [12].

Future programming environments should incorporate similar

features for better programmability; and ideally all processing

elements should be treated in the same way.

III. NORTHUP

This section describes the design of Northup, which presents

several design advantages:

• Efficient Computation and Data Mapping. Northup

uses a divide-and-conquer approach to enable natural and

efficient mapping of computation and data to diverse

hierarchically-organized hardware components.

• System-topology Aware. Programmers are not required

to directly deal with the underlying system topology and

hardware details. API is provided to obtain useful mem-

336



PE 2PE 1

0

1 2

3 4 5

6 7 8

PE 0 PE 3

Level 0

Level 3

Level 2

Level 1

M
em

ory, Storage L
evels

Processing Elements

Fig. 2: Asymmetric tree structure representing the system
topology. Each circle represents a memory node while each
rectangle represents a processor (e.g., CPU, GPU, FPGA).

ory node information whenever needed (e.g., scheduling

and performance tuning).

• Improved Portability. A unified interface for managing

data movement is proposed to improve portability, in con-

trast to existing models where the storage and memories

are exposed to software in different ways. This enables an

application to work across different memory hierarchies.

• Computation and Data Movement Decoupling. Pro-

gramming for computation and data movement is decou-

pled and treated separately, which leads cleaner code.

A. A Recursive Model

Modern computer systems as well as large machine clusters

are organized in a hierarchical manner. Typically, in a parallel

algorithm, different regions of data are scheduled in a partic-

ular order defined by the algorithm and loaded from slower

(higher-level) memories to faster (lower-level) memories. This

process is repeated until all regions are processed. Similarly, in

Northup we break a large problem into sub-problems that are

themselves smaller instances of the same problem. We then

recursively solve these sub-problems that can fit into faster

memories, and finally combine the results. This concept is

discussed in Section III-C.

There has been a large body of prior work on recursive

algorithms, but in other contexts. Anderson et al. [13] and

Dongarra et al. [14] present linear-algebra algorithms, which

exploit the deep memory hierarchy of microprocessors. Yi et

al. [15] propose compiler techniques to transform iterative

codes into a recursive format. Sequoia [16] is a programming

model and runtime which allows programmers to explicitly

program the memory system and application decomposition.

Virtually all the iterative algorithms can be transformed into

their recursive counterparts. With the advent of new processor

and memory technologies, the recursive approach can be

very effective and convenient for application-to-architecture

mapping for increasingly complex systems. Inspired by these

works, we target a generic, divide-and-conquer approach to

map parallel applications to heterogeneous systems, with better

heterogeneous resource management.

B. Topological Tree

Northup provides generic support for software-managed

memories. To be specific, Northup is capable of differentiat-

ing memory spaces regardless of shared or private memory

Listing 1 Data structure of tree nodes
1 node {

2 memory_t{

3 int storage_type;

4 int physical_id;

5 int capacity, used; ... }

6 processor_t{ //only for leaf nodes

7 int processor_type;

8 int LLC_size;... };

9 int level;

10 int node_id;

11 bool isLeaf;

12 ...

13 struct node *parent;

14 struct node *children[numBranches];

15 list *work_queue[numQueues]; ...};

and supporting explicit data movement between memories.

In Northup, the system is abstracted in a hierarchical tree

structure as shown in Figure 2. In contrast to prior work [16],

this tree can be asymmetric and heterogeneous, and further

include new structures to store the information for memory

and processor nodes. Each tree node is associated with a

unique identifier. We number the memory and storage levels

in a classic way: the slowest storage is assigned “0” while

faster storages are assigned with larger numbers. In this way,

physical memory and storage that map to logical tree nodes

are virtualized, easy for management. This virtual-to-physical

mapping can be reconfigured in different use cases (e.g., NVM

for physical memory or storage). In the tree, an inner node or

root represents an intermediate memory or storage, while a

leaf node represents the transition point from the software to

hardware-managed memory [16]. Each leaf node is attached

to a processor with its own hardware cache, and computation

happens at leafs. Note that there is an exception: the CPU can

attach to a non-leaf node in a CPU + discrete GPU system.

The Northup tree can be maintained by system software or

constructed by the runtime library at program initialization.

Listing 1 shows a sample data structure of a tree node. A leaf

node also contains the information of the attached processor.

Data management and job scheduling can refer to this tree

structure. For example, by checking the storage type of source

and destination, a data movement function internally can

determine the correct data copy function to use (e.g., DMA or

I/O function). By examining the capacity and usage, a program

can decide the blocking size. The tree node can also store the

links to work queues which keep track of the recursive tasks;

and this allows for the implementation of load balancing across

different tree branches (see Section V-E). Finally, a node

also includes the pointers to its children. Northup provides

various functions to query the Northup tree. For example,

f etch node type() obtains the storage type; get parent() and

get children list() returns the parent and the children nodes

of a specific node, respectively; get cur treenode() returns

the current tree node id (useful for indexing data), get level()
provides the current memory level, and get max treelevel()
provides the total number of tree levels.

C. A Recursive Algorithm Template

Listing 2 shows an example of regular OpenCL/CUDA-

like code where each element in the matrix is computed in a

337



Listing 2 Regular pseudocode
1 void myfunction(arg...){

2 L0_chunk_size_x = dim_x/L0_x

3 L0_chunk_size_x = dim_x/L1_x

4 for(i = 0; i < L0_x; i++)

5 for(j = 0; j < L0_y; j++)

6 //storage allocation code for each chunk

7 ...

8 L0_size = L0_chunk_size_x * L0_chunk_size_y

9 //allocate memory buffer

10 buffer = malloc(L0_size * sizeof(T))

11 result = malloc(L0_size * sizeof(T))

12 file_open(fd[i * L0_y + j], .. )

13 file_read(buffer , L0_size, fd[i * L0_y + j]);

14 ...

15 for(m = 0; m < L1_x; m++)

16 for(n = 0; n < L1_y; n++)

17 //set up device context

18 ...

19 //allocate OpenCL buffer

20 dMalloc(d_contex, d_buffer, size, ...)

21

22 dCopyBlockH2D(d_buffer, //dst

23 buffer, //src base

24 m * L1_chunk_x, //offset x

25 L1_chunk_x, //size

26 n * L1_chunk_y, //offset y

27 L1_chunk_y)

28 ...

29 dLaunchComputation(d_buffer, d_result, ...)

30 dCopyBlockD2H(d_result, //src

31 result, //dst

32 m * L1_chunk_x, //offset x

33 L1_chunk_x, //size

34 n * L1_chunk_y, //offset y

35 L1_chunk_y)

36 ...

37 file_write(result, L0_size, fd_r[i*L0_y+j])

38 }

massively-parallel fashion. A matrix at memory level 0 (disk)

is divided into L0 x×L0 y chunks. Each chunk is moved to

level 1 (a DRAM buffer) and further divided into L1 x×L1 y

smaller chunks. Each smaller chunk is moved to the GPU

device memory and a GPU kernel is launched. Note that

the code will NOT work if adding a new memory level or

changing to another heterogeneous architecture. In contrast,

the equivalent Northup code (Listing 3) works on arbitrary

heterogeneous systems and can efficiently map to hardware.

In Northup, a typical application is written in a way similar

to the pseudocode in Listing 3. The major functionality is

expressed in a recursive function. Inside the function, it will

first check whether the execution reaches a leaf node. At

a leaf node, the program launches computation on specific

processors. Level is incremented in each recursion. Based on

the Northup tree, the runtime keeps track which storage node

the program has reached. At an intermediate level i, it will first

set up buffers for the next level i+1 using setup bu f f ers()
and break the data at level i into multiple chunks. The

get x() and get y() functions obtain the dimensions of chunk

decomposition in x and y directions. At a given tree node

(get cur treenode()), there are a total of get x()× get y()
chunks to process, and index() calculates the location (e.g.,

array offset) from where the data movement (up or down)

should be performed for a specific chunk. Each chunk is

moved to the next level i + 1 through data down(). The

number of chunks depends on the current available capacity

of level i+1 and size of the data structure. The program then

enters a for-loop performing the same task for each chunk for

Listing 3 Northup pseudocode
1 void compute_task(buffer, result){

2 if get_device() == GPU

3 node = get_cur_treenode()

4 dLaunchComputation(buffer[node], result[node])

5 else if get_device() == CPU

6 ...

7 }

8 void setup_buffer(buffer, ...){

9 ...

10 node = get_cur_treenode()

11 buffer[node] = alloc(size, node)

12 result[node] = alloc(size, node)

13 }

14 void data_down(buffer,...){ //move data to children

15 ...

16 node_src = get_cur_treenode()

17 node_dst = node_src.get_children_list()[0]

18 move_data_down(buffer[node_dst],

19 buffer[node_src] + index(m,n), ...)

20 }

21 void data_up(result, ...){ //move data to parent

22 node_src = get_cur_treenode()

23 node_dst = node_src.get_parent()

24 move_data_up(buffer[node_dst] + index(m, n),

25 buffer[node_src], ...)

26 }

27 int myfunction(buffer, result, ...){

28 if (get_level()) == get_max_treelevel()

29 compute_task() //computation at leaf nodes

30 else

31 #pragma for all (m, n)

32 for m in [0, get_x(get_cur_treenode())]

33 for n in [0, get_y(get_cur_treenode())]

34 setup_buffer(buffer, result, ...)

35 data_down(buffer, result, ...)

36 northup_spawn(myfunction(buffer, result, ...))

37 data_up(result, ...)

38 }

the next level, by launching recursive calls for the chunks at

level i+1. Finally, after the call, it moves the result back to

level i through function data up().

Theoretically, chunks can move and execute at lower mem-

ory levels concurrently. However, in reality they may execute

sequentially or only a few chunks can move concurrently

(along the same tree branch) due to smaller capacities of lower

memory levels. Alternatively, level i can spawn multiple tasks

each processing one chunk to one of its children at level i+1

(e.g., multiple tree branches). For example, in Figure 2, node

3 has two children 6 and 7. We also support task queues to

keep track of the progress of data movement for individual

chunks. The tasks can be pushed into the per-memory-level

queue for scheduling. Given n chunks at level i, n tasks will

be enqueued. This enables multi-stage data transfer and better

parallelism. Whenever the space of lower memory levels is

freed, more chunks can be scheduled for movement. Data

transfer optimization is further made for overlapping compu-

tation and communications (i.e., OpenCL/CUDA streams) at

the leaf node. The recursive tree can be further unfolded to a

dependency graph to exploit more parallelism, which we leave

for future work.

Note that recursive execution may present the risk of stack

overflow. However, this is not an issue for Northup, because

Northup recursion is at a coarse-grained level; the total number

of recursion levels (i.e., number of memory levels) is small

enough such that this issue will not happen in practice if

programmed appropriately.

338



D. Data Management API and Runtime

In the above code example, programmers or library writers

need to define their own data management functions, i.e.,

setup bu f f ers(), data down(), and data up(). Northup pro-

vides buffer allocation and data movement functions for users.

As discussed, APIs for different memory and storage nodes

(I/O, virtual memory, or specialize memories) are dramatically

different. An implementation for one system architecture may

not be portable to another. For example, the heap memory can

be managed by libc or POSIX memory calls while file I/Os

can be operated with a FILE type or file descriptors. Similarly,

GPU buffers are declared with special data types (e.g., cl mem

in OpenCL) and managed by special functions.

We provide a high-level abstraction to resolve the diversity

of memories/storages. In particular, a unified interface is

provided in Northup to deal with different types. The key is

that all buffers are associated with the same opaque type for

portability, and data allocation and movement are achieved

with a generic interface. We show an exemplary solution in

Table I. For some functions, we make extensions by including

tree nodes as source and destination. The runtime system deter-

mines the appropriate operations to perform based on the levels

and types of tree nodes involved in the function. Alternatively,

based on the current memory level it may walk up and down

the tree (e.g., with implicit args for source and destination). For

demonstration purpose, the current implementation uses void

pointers. The data move function (e.g., a wrapper) internally

decides how to dereference pointers depending on the involved

storages and types for that specific call. Better support of type

safety and C++11 like semantics are left for future work.

In actual implementation, a specific universal type (e.g., a

UniversalType) can be designed for a programming language.

The implementation is transparent to users. For example,

if node 0 is a file-based storage, Alloc(size,node 0) allocates

space on a disk drive and return a void pointer. The imple-

mentation of Alloc() may launch the open() system call to

return a file descriptor f d. One simple solution is the returned

void pointer will point to the actual memory address that

stores the f d. Subsequent data movements (e.g., move data())
also use void pointers. The f d, dereferenced with the pointer,

is used for read/write() system calls. Similarly, the same

applies to OpenCL cl mem for GPU memories. Listing 4

shows the pseudocode for the move data() wrapper function.

It internally examines the source and destination tree nodes.

In this case, if writes are from the main memory to the file

storage, it calls f ile write(), which in turn calls the POSIX

write() with file descriptor pointed by the void pointer. Note

that data down/up() does not necessarily map to data copies;

it can be implemented with memory mapping functions too.

For different scenarios, configurations can be made to

customize data management. For example, there are different

modes to operate a file (e.g., caching). Since our applications

directly manage storage data, flags are set to minimize kernel

caching effects of I/O (directly to/from user-space buffers) and

also guarantee that the call is synchronous when writing to

the storage (e.g., O DIRECT and O SYNC). The Northup

Fig. 3: Dense matrix multiply C =AB. The regions of matrices
(in gray) are moved from memory level i to level i+1.

runtime also maintains internal structures in order to imple-

ment a universal interface. For example, Alloc(size,node 0)
allocates space on the disk drive by generating a file. Thus

for resource management, we need to maintain a list of file

names and their pointers to all the created spaces.

E. Computation and Acceleration

When data reaches a leaf node, computation is initiated on

the processor attached to the leaf. Computation for different

accelerators (e.g., CUDA and OpenCL) can be pre-compiled,

or a single piece of code (OpenMP, C++ AMP) can be

compiled into different architecture targets. At a leaf node,

programmers can query the processor type (see Section III-B)

and launches the computation kernel on a desirable device. If a

leaf node is associated with more than one processor (e.g., the

CPU and the GPU in an APU), computation can be launched

on either processor or work can be spread across devices

in a data-parallel fashion (see Section V-E). One benefit of

using Northup is that data movement and computation are

decoupled and treated independently. Therefore, programmers

can optimize their code independently in move data and

compute task functions. This leads to a big advantage: the

latest research on optimizing algorithms (e.g., GPGPU) can

be easily plugged into Northup. In addition, Northup has

another advantage: it is easy to determine the most appropriate

processor to run the task. By profiling the execution of earlier

scheduled chunks, the system can provide useful information

to subsequent scheduling and task-processor mapping. To

relate the information to logical problem decomposition steps,

programmers still need to understand the overall system topol-

ogy and required levels to map algorithms (Northup can output

the topology). Nevertheless, Northup can help programmers

write clean and portable codes.

IV. ALGORITHM DEVELOPMENT

We use several representative, state-of-the-art algorithms to

demonstrate the key ideas of Northup. But this framework is

generic to a variety of problems.

A. Dense Matrix Multiply

Dense matrix multiply (C = AB) is one of the most im-

portant operations in numerical analysis, deep learning, and

data analytics. We extend an optimized, tiled version of GPU

dense matrix multiply [17] for Northup out-of-core execution.

The baseline OpenCL version we use is able to achieve more

than 80% of peak GPU FLOPS.

In dense matrix multiply, each recursive level performs the

following steps starting from root level 0:

339



TABLE I: Unified Data Management Interface. Sample Functions.

Sample programming interface Description

(void *)alloc(size t size, int tree node) allocate space on a memory or storage node and return a void pointer
void move data(void *dst, void *src, size t size, size t offset, int dst tree node, int src tree node) move data from the source to the destination tree node

void move data down(void *dst, void *src, size t size, size t offset, int i) move data to ith the child node, assuming the current node as the parent
void move data up(void *dst, void *src, size t size, size t offset) move data to the parent node, assuming the current as a child

void release(void * ptr) release the storage or memory space pointed by ptr

Listing 4 Pseudocode for interface implementation.
1 // This example only shows the code snippet for file I/Os.

2 // Other cases (e.g., OpenCL buffers, memcopy and different combinations of dst/src) use a similar approach.

3 void file_write(int fd, void *buf, size_t count, size_t offset) {

4 lseek(fd, offset, SEEK_SET); //using the linux system calls

5 cnt = write(fd, buf, count);

6 }

7 void move_data(void *dst, void *src, size_t count, long offset, int dst_tree_node, int src_tree_node) {

8 //obtain the information of both the destination and source tree nodes

9 if ((fetch_node_type(dst_tree_node) == FILE_TYPE) && (fetch_node_type(dst_tree_node) == MEM_TYPE)){

10 int fd = *(int*)dst; //get the file descriptor pointed by ptr

11 file_write(fd, src, count, offset); //launch the file write operation}

12 //other cases ...

13 }

• Determine if the execution reaches a leaf (i.e., l =
max level) where l represents level. If so, conduct matrix

multiply on the smallest sub-matrices on a processor.

• Otherwise, divide the current input matrices A(l) and

B(l) into smaller sub-matrices, each with a size of

dimA−x(l)× dimA−y(l) and dimB−x(l)× dimB−y(l), re-

spectively (where dimA−y(l) = dimB−x(l)). To compute

each sub-matrix Ci, j(l), first set up data buffers for a

row of sub-matrices extracted from the ith row strip of

A(l), and a column of sub-matrices extracted from the

jth column strip of B(l). We call these two strips a row

and a column shard, respectively. Then move the row and

column shards at level l to level l +1.

• For all sub-matrices, launch dense-matrix multiply recur-

sively, and finally copy the result matrix Ci, j(l) back from

level l +1 to level l.

In Figure 3, the program loads the two shards from the

slower memory to the faster memory. Similarly, “dot product”

at the block level (i.e., sub-matrix) will be performed by 1)

first computing partial results from the corresponding blocks

of A and B, and then 2) accumulate the partial sums. There

is one immediate optimization that we can apply. For row

shard m, it is reused multiple times to calculate the sub-

matrix (m, j), where j is [0,num column shards). Therefore,

the row shard m can stay in the l + 1 level and the program

just iteratively loads column shards to the next level. Similar

process is repeated for m+1, m+2, and so on.

At leafs, computation is executed on the GPU. We lever-

age the GPU’s per-compute-unit (CU) local memory (shared

memory in CUDA) for each data block and manage the

data movement explicitly. Note that the GPU on-chip data

movement may also be integrated into Northup’s recursive

model. However, this requires additional compiler support,

which we leave for future work. A 4k× 4k blocking size is

used in DRAM, and 16×16 blocking size is used in GPU local

memory. These sizes are manually chosen through experimen-

tation while further performance tuning can be applied.

Fig. 4: Each HotSpot-2D block and its four borders are loaded
to the memory level i+1 for computation.

B. Thermal Simulation (Stencil)

Stencil operations, a key building block in HPC (e.g.,

molecular dynamics, thermal simulation), are widely used

in applications solving partial differential equations. We use

the HotSpot-2D [18] thermal simulation for demonstration,

which we extend to out-of-core Northup execution. HotSpot-

2D achieves about 8× speedup on the GPU compared to the

CPU and is also a benchmark in SPEC ACCEL [19].

In Northup HotSpot-2D, each recursive level performs the

following steps starting from level 0:

• Determine if the execution reaches the leaf level. If so,

conduct HotSpot on the smallest block on a processor.

• Otherwise, divide the current block matrix into smaller

sub-blocks each with a size of dim(l)×dim(l), where l

is the current level. For each sub-block, the data structure

includes two dim(l)×dim(l) matrices (input and output),

two compact vectors for four borders of the sub-block.

We then move these data from level l to level l +1.

• For all the sub-blocks, launch the stencil computation

recursively, and copy the data of the result matrix from

level l +1 to level l.

In Figure 4, one issue is some border elements of each block

are stored non-contiguously (east/western borders), which

leads to inefficient memory accesses. We allocate vector

buffers and pack the border data in a contiguous manner and

pass them to the next level.

At leafs, we use the OpenCL HotSpot-2D [18] for GPU

computation. Given the data in the leaf memory, we launch

a GPU kernel with a number of 2-D workgroups, and each

340



Fig. 5: The regions of SpMV vectors (in gray) are moved from
memory level i to memory level i+1 for computation.

workgroup is responsible for processing a small block. We

load the data block and its borders (that can fit into the on-chip

cache) to (block size + 2)× (block size + 2) local-memory

arrays for better locality and low latency. An 8k×8k blocking

size is used in DRAM, and 16× 16 blocking size is used in

the GPU local memory.

C. CSR-Adaptive (SpMV)

Sparse-matrix vector multiplication (SpMV) is an important

primitive in HPC and enterprise computing. It multiplies a

sparse matrix and a dense vector, and generates a dense

vector (i.e., Ax = b). We use the CSR-Adaptive algorithm

as the baseline [20], which is implemented in OpenCL and

achieves a 4.5× speedup compared to the SpMV routine in

cuSPARSE 7.5. CSR uses three compact vectors to represent a

sparse matrix: row ptr, col id and data. We break these data

structures in the row dimension of the matrix into smaller

chunks; and each chunk with multiple rows is called a shard.

In Northup CSR-Adaptive, each recursive level performs the

following steps, starting from the root level 0:

• Determine whether program execution reaches a leaf

node. If so, conduct SpMV computation for the shard

on a processor.

• Otherwise, divide the shard in the current level further

into smaller sub-shards. Each sub-shard contains a subset

of rows in the current shard (i.e., a portion of row ptr,

col id and data). For col id and data, the portion of data

constituting a sub-shard is determined with row ptr[start]
and row ptr[end]), where start and end mark the starting

and ending offsets of the rows in the shard. We then move

sub-shards from level l to level l +1.

• For each sub-shard, we launch CSR-Adaptive recursively,

and copy the result back from level l +1 to level l.

A simple strategy is to evenly divide rows (see Figure 5).

However, it is possible that different rows (chunks of rows)

have different number of non-zeros (nnzs). This information

can be easily calculated (e.g., row ptr[end]− row ptr[start])
to determine the desirable size to move to the next-level. For

example, if the nnz of a shard is too large to fit in the next-level

memory, it can be further broken into smaller shards. Northup

has a unique advantage to handle this situation thanks to its

recursive scheme. Note that one requirement for SpMV is the

fastest memory has to be big enough to hold the vector b.

Therefore, it may be useful to provide a solution, combining

programmers-controlled (e.g., Northup) and system/hardware-

controlled memory management. Once a shard is mapped to

a leaf node, we use CSR-Adaptive [20], which dynamically

Fig. 6: Performance comparison: in-memory processing, SSD,
and disk-drive.The y-axis represents the normalized runtime
(slowdown) to the baseline.

choose kernels based on the shapes of sparse matrices for

optimized performance. The inputs we used have 16 million

rows, stored in SSD/disk drive. The matrix is divided into four

chunks in row-dimension to load into DRAM.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments use AMD A10-7960k APU and A10-

7850k + FirePro W9100 GPU. We use Ubuntu 16.04, and

HSA with SNACK (OpenCL kernels) [21] for APU devel-

opment while ROCm [22] with OpenCL for discrete GPU

development. We use an entry-level HyperX Predator PCI-

E SSD with a speed up to (1400, 600) MB/s, (read, write)

performance. Our hard drive is a SATA-based Western Digital

WD5000AAKX. A 2 GB of main memory is configured as

a staging buffer for out-of-core execution. For in-memory

processing, we use 16 GB memory holding the entire working

set. For inputs, we use 16k×16k and 32k×32k float matrices

for dense-matrix multiply and HotSpot. The SpMV inputs

are from the Florida sparse-matrix collection [23]. The same

algorithms are used in the Northup leafs and in the original

non-Northup baseline.

B. Baseline in Memory versus Northup Execution

We first compare Northup (out-of-core) against the baseline

in-memory processing [17], [18], [20], on an APU with two

levels of Northup-managed storage: main memory and file

storage (SSD or disk drive). For in-memory processing, we

assume all the data is already loaded into memory while for

out-of-core processing we use the same input and assume

that a program starts execution from the storage level (the

tree root). For the latter, there is a one-time overhead of

preprocessing the original file and reorganizing it in one

or multiple files for chunking. Preprocessing is a common

practice in distributed systems for HPC and data analysis.

Figure 6 shows the performance comparison of in-memory

processing, SSD and disk drive. With Northup, all three

algorithms are able to exploit multiple memory layers, despite

the fact that they have different characteristics. Dense-matrix

multiply is the most compute-intensive among the three with

high data reuse. Therefore, the overhead of accessing slow

storages can be effectively hidden. For the more memory-

intensive HotSpot-2D and CSR-Adaptive, there is little com-

putation and data reuse to hide latency. They experience

a 2-2.5x slow-down switching from in-memory to Northup

341



Fig. 7: Execution breakdown due to CPU, GPU and buffer
setup, transfers and I/Os. Two-level Northup tree: main mem-
ory and disk drive/SSD. The processor is the GPU on an APU.

Fig. 8: Execution time breakdown for a discrete GPU system.
The Northup tree has three levels: GPU device memory, main
memory, and disk drive.

processing with a disk drive. Using a faster SSD, HotSpot-2D

and CSR-Adaptive exhibit 0.3-1.4x slow down. HotSpot-2D

obtains more performance benefit than CSR-Adaptive, because

it uses relatively regular blocks with better I/O performance

as compared to variable buffer sizes by CSR-Adaptive.

Dense-matrix multiply and CSR-Adaptive tend to lie on two

extremes in terms of computational intensity and randomness

of data accesses. We hypothesize that the performance of

many applications will lie within the spectrum of what we

have experimented. Also, with faster storage and new memory

technologies, which we discuss later in Section V-D, perfor-

mance can be further improved. In addition, our runtime is

lightweight. It makes two levels of recursive calls in an APU

system (three levels in a discrete GPU system) with additional

task control and lookup on the Northup tree. Since a typical

system only consists of a few memory levels, the runtime

overhead is quite low. Overall, the measurement shows the

runtime overhead is less than 1% of the total execution time.

Of course, this also depends on the chosen blocking sizes–

overly fine-grained problem decomposition results in many

calls and low hardware utilization. Our manually selected

blocking sizes (Section VI) are small enough to fit into the

storage and big enough to fully utilize the GPU.

C. Execution Breakdown

We break down the overall Northup execution time into

CPU and GPU execution, buffer setup, and data transfers such

as I/Os (e.g., open, read/write, close). Since computation is

offloaded to GPU , CPU computation is a small portion in

these algorithms. CSR-Adaptive uses the CPU for binning

rows into different categories and spends relatively more

Fig. 9: I/O and overall performance using faster storages. All
numbers are normalized to the 1400/600 SSD case with 2-
level hierarchy and GPU processing (in APU). The Δ points
represent the performance of the in-memory version.

time. In Figure 7, using the disk-drive configuration, dense-

matrix multiply spends majority of time on GPU computation,

while HotSpot-2D and CSR-Adaptive spend 22% and 28%,

respectively. This again suggests that HotSpot-2D and CSR-

Adaptive are more sensitive to memory/storage bandwidth.

They can obtain significant benefit if switching to new memory

technologies such as stacked DRAM and NVM. By switching

to SSD, the portion spent on GPU computation becomes 59%

and 41% for HotSpot-2D and CSR-Adaptive, respectively. We

conduct another experiment with three levels of tree nodes as

shown in Figure 8. In this experiment, we offload computation

to a discrete GPU with an additional disjoint memory space

compared to the previous setup. OpenCL transfers contribute

7%, 12%, and 33% of execution time for dense-matrix multi-

ply, HotSpot-2D and CSR-Adaptive.

D. Performance Benefits with Faster Storages

The PCI-E SSD used in this study has a sequential read-

/write bandwidth of 1400/600 MB/s. To quantify the potential

benefits of Northup with faster storage, we develop an emula-

tor capable of performing a first-order projection by keeping

track of read/writes issued by application I/Os and considering

read/write bandwidths of the storage. We also include the I/O

time into the overall runtime (the other components being

constant). We consider a spectrum of configurations with

different (read/write) bandwidths, ranging from (1400/600) to

(3500/2100) representing some fastest PCE-E SSDs on the

market. In Figure 9, the gain of switching to faster hardware

is significant, especially for memory-intensive workloads such

as HotSpot-2D and CSR-Adaptive—an improvement of 65%

for I/O and 30% for overall performance. We still have not

used other NVMs, which may provide faster performance. Our

baseline in-memory OpenCL version assumes all the data is

ready in DRAM and excludes I/O for execution time measure-

ment. Therefore, it is considered to be the performance upper-

bound that Northup can achieve. The performance differences

between Northup (with SSD) and in-memory versions are

5%, 15%, and 30% for dense-matrix multiply, HotSpot-2D,

and CSR-Adaptive, respectively. Faster NVMs may further

improve Northup’s performance and bridge the gap.

One key takeaway is with emerging memory technologies,

the extremely wide gap between DRAM and storage (SS-

342



CPU GPU

32 x 32

4k x 4k

16k x 16k

Fig. 10: Work queue organization and data decomposition.

D/disk drive) can be filled for better performance. Similarly,

the same applies to die-stacked memory which fills the gap

between SRAM and DRAM. This results in a future memory

hierarchy with a good coverage of memory and storage with

different latency/bandwidth spectrum, allowing more effec-

tive latency hiding across memory levels than before. Thus

it makes Northup a promising framework to program and

schedule applications.

E. Task Queuing and Load Balancing

Future systems will exhibit an asymmetric memory hierar-

chy in Figure 2. The system is subject to load imbalance when

uneven workloads are assigned to different subtrees. Northup’s

topological tree structure is able to naturally support dynamic

load balancing when tree nodes store information such as

on-going tasks at different subtrees. Each tree node can be

associated with one or multiple work queues, keeping track of

the progress of the recursive tasks. In particular, examining the

status of a subsystem can be easily accomplished by checking

the queue that associated with the root of a subtree.

We perform a case study to show the capability of Northup

for load balancing. We exploit data parallelism of HotSpot-2D

and spread work simultaneously on both CPU and GPU at the

leaf node (a shared-virtual memory APU). We use the SSD as

storage. Because data cannot fit into the main memory, for an

inner node each queue element represents a task of moving a

chunk from SSD to the main memory. At a leaf node, we set

up multiple queues to track computation progress; each queue

is associated with a GPU OpenCL workgroup or a CPU thread

(see Figure 10). When a data chunk reaches the main memory,

it is broken into smaller blocks. The task of each row of

blocks is assigned to one queue. Thus each queue is assigned

with multiple rows of blocks. Based on this organization, we

enable work stealing across the CPU and the GPU. A CPU

thread or a GPU workgroup pops elements from its local queue

(at its tail pointer) for computation. GPU workgroups may

process tasks faster than CPU threads, so GPU workgroup

may steal elements pointed by the head pointer of another CPU

queue. Atomics with the platform-scope and acquire memory

ordering [2] are used to implement the lock-free stealing [24].

Figure 11 shows the benefit of CPU-GPU load balanc-

ing against GPU-only execution. With work-stealing, stencil

achieves a performance improvement up to 24% against the

GPU-only Northup. We experiment three configurations (m,n)
where m represents the dimension of the square input matrix

in SSD and n represents the dimension of the chunk that is

Fig. 11: HotSpot-2D (Stencil) performance of load balancing
(APU+main memory+SSD) normalized to GPU-only Northup
execution (GPU+main memory+SSD). For each input point,
8, 16, and 32 queues are experimented for the GPU.

loaded to the main memory. Each workgroup processes a row

of blocks with dim 16×n block. The parameter n has to be big

enough so there are enough elements per queue while small

enough to fit into the main memory. We vary the number of

queues and find that using 32 queues achieves the best per-

formance, since multiple workgroups per GPU SIMD engine

is needed to fully utilize GPU hardware and hide latency. In

summary, Northup structures can facilitate scheduling and load

balancing of applications in a heterogeneous system.

VI. DISCUSSIONS

High-level Programming Language: Northup can be an

intermediate layer interacting with a higher level abstraction.

A high-level language and API (e.g., OpenMP tasks, Cilk) can

be extended with pragmas, so the compiler can emit code with

calls to low-level libraries and transform codes to a recursive

format to exploit the memory hierarchy with explicit data

transfers and accelerated computation. Either programming in

a high-level language or in Northup, the system must be able to

identify both the underlying memory topology and properties

of memory nodes, which makes the proposed tree structure

useful in practice.

Northup for HPC: In traditional HPC, high-speed networks

(e.g., InfiniBand) are used to stream data to a local compute

node. Thus NVMs (e.g., SSDs) are usually treated as a general-

purpose caching layer or burst buffer between compute nodes

and storages. However, this may only be efficient for a subset

of workloads with a high-degree of reuse. With new NVMs,

bandwidth of these devices is already beginning to eclipse

available point-to-point network bandwidth [25], which makes

implementation of NVM as a form of per-node slower memory

promising. A future Exascale compute node may use die-

stacked memory as a small capacity, fast memory while using

NVM as large capacity, slow memory [1]. In addition, PIM

can be naturally supported as a Northup subtree. In fact,

Northup can incorporate any subsystem with its own memory

hierarchy. Therefore, Northup-like solutions can be useful to

manage such deep, complex memory hierarchy in a future

system, while interacting with other software for distributed

memory management and computation–this interdisciplinary

area is insufficiently studied by prior work.

343



Memory Space Northup assumes several logical memory

or storage spaces to operate (though not a requirement).

Programmers prefer a simple abstraction of single, flat address

space. Ideally the underlying software (e.g., OS) or hardware

can intelligently detect and determine desirable mappings of

data to different physical memories. However, it is unclear if

an effective solution exists for increasingly complex memory

hierarchy. Though the best approach to abstract memories

remains an open question, the notion of differentiating spaces

and regions (e.g., memory scopes) is useful for programmers

in many cases. Northup is especially suitable for these cases.

Data Layout: Different architectures may favor different

memory layouts and access patterns (e.g., row versus col-

major, AoS versus SoA) [26]. For sparse-matrix problems,

the choice of data layouts not only depends on architectures

but also on inputs [27]. Furthermore, some applications may

switch access patterns in different execution phases [28].

One can imagine when data migrates across memory levels,

chunks can be transformed and stored in different formats. In

fact, layout transformation is beneficial for applications with

sufficient data reuse [29] and exposing layout control to the

programming API might also be useful. Northup can be easily

extended to support this with a special version of move data()
function.

VII. CONCLUSION AND FUTURE WORK

Northup incorporates the fundamental divide-and-conquer

technique in computer science with the goal of making pro-

gramming a heterogeneous system easier. A heterogeneous,

asymmetric tree-based model and associated structures are

designed to abstract diverse hardware components including

new memory/storage devices and accelerators. Programs de-

veloped in a Northup style are portable and adaptable to

system architectural changes. Furthermore, it allows efficient,

recursive mapping of a problem to fully exploit the resources

of the heterogeneous system. Northup is further enhanced by a

unified interface for managing data placement and movement,

and it can easily integrate runtime techniques to improve

performance (e.g., queue-based dynamic load balancing). We

use several state-of-the-art parallel algorithms and demonstrate

the performance benefits of Northup. With emerging memory

and storage devices, more and more tree levels and nodes

will be added to the memory hierarchy of the computer

systems. Northup is an effective model for managing the

heterogeneous memory hierarchy. Also, our solution decouples

memory management and computation; and computation can

be a standalone “plug in” to the program regardless of which

acceleration approach to use (FPGA, GPU, and other many-

core processors). Future work includes extending the model to

support distributed systems. Some part of Northup is currently

optimized in a manual way, we will include better compiler

support in future.

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

REFERENCES

[1] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.
Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, “Achieving exascale capabilities through heterogeneous
computing,” IEEE Micro, vol. 35, no. 4, pp. 26–36, 2015.

[2] “Heterogenous System Architecture,” http://hsafoundation.com/.
[3] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and

G. H. Loh, “Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories,” in HPCA, 2015.

[4] G. Loh and M. D. Hill, “Supporting very large dram caches with
compound-access scheduling and missmap,” IEEE Micro, vol. 32, no. 3,
pp. 70–78, 2012.

[5] Y. Xie, “Modeling, architecture, and applications for emerging memory
technologies,” IEEE Design Test of Computers, vol. 28, no. 1, pp. 44–51,
2011.

[6] “High Bandwidth Memory,” http://www.amd.com/en-
us/innovations/software-technologies/hbm/.

[7] P. Wu, D. Li, Z. Chen, J. S. Vetter, and S. Mittal, “Algorithm-directed
data placement in explicitly managed non-volatile memory,” in HPDC,
2016.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” in ASPLOS, 2011.

[9] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS, 2011.

[10] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for ssd performance,” in USENIX ATC,
2008.

[11] “Storage Networking Industry Association. NVM programming model,”
Tech. Rep., 2013.

[12] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “Gpufs: Integrating
a file system with gpus,” in ASPLOS, 2013.

[13] B. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski, and
P. Yalamov, “Lawra linear algebra with recursive algorithms,” in In-
ternational Workshop on Applied Parallel Computing. Springer, 2000.

[14] J. J. Dongarra and P. Raghavany, “A new recursive implementation of
sparse cholesky factorization,” in 16th IMACS World Congress, 2000.

[15] Q. Yi, V. Adve, and K. Kennedy, “Transforming loops to recursion for
multi-level memory hierarchies,” in PLDI, 2000.

[16] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn, L. Leem,
J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Sequoia:
Programming the memory hierarchy,” in ICS, 2006.

[17] “HSA Matrix Multiplication Example,” Web resource.
https://github.com/HSAFoundation/CLOC/tree/master/examples/snack.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[19] “SPEC ACCEL,” Web resource. https://www.spec.org/accel/.
[20] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multipli-

cation on gpus using the csr storage format,” in SC, 2014.
[21] “CL offline compiler and SNACK,” Web resource.

https://github.com/HSAFoundation/CLOC/.
[22] “Radeon Open Compute. Rocm,” Tech. Rep.
[23] “The university of florida sparse matrix collection,” Web resource.

http://www.cise.ufl.edu/research/sparse/matrices/.
[24] P. Tsigas and D. Cedermann, Dynamic Load Balancing Using Work-

Stealing. GPU Computing Gems Jade Edition, 2011.
[25] M. Jung, E. H. Wilson, III, W. Choi, J. Shalf, H. M. Aktulga, C. Yang,

E. Saule, U. V. Catalyurek, and M. Kandemir, “Exploring the future of
out-of-core computing with compute-local non-volatile memory,” in SC,
2013.

[26] I.-J. Sung, J. A. Stratton, and W.-M. W. Hwu, “Data layout transforma-
tion exploiting memory-level parallelism in structured grid many-core
applications,” in PACT, 2010.

[27] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” NVIDIA Technical Report NVR-2008-004, 2008.

[28] Z. Majo and T. R. Gross, “Matching memory access patterns and data
placement for numa systems,” in CGO, 2012.

[29] B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in memory
using 3d-stacked dram,” in ISCA, 2015.

344


