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ABSTRACT
High-performance computing, enterprise, and datacenter servers are

driving demands for higher total memory capacity as well as mem-

ory performance. Memory “cubes” with high per-package capacity

(from 3D integration) along with high-speed point-to-point inter-

connects provide a scalable memory system architecture with the

potential to deliver both capacity and performance. Multiple such

cubes connected together can form a “Memory Network” (MN),

but the design space for such MNs is quite vast, including multiple

topology types and multiple memory technologies per memory cube.

In this work, we first analyze several MN topologies with different

mixes of memory package technologies to understand the key trade-

offs and bottlenecks for such systems. We find that most of a MN’s

performance challenges arise from the interconnection network that

binds the memory cubes together. In particular, arbitration schemes

used to route through MNs, ratio of NVM to DRAM, and specific

topologies used have dramatic impact on performance and energy

results. Our initial analysis indicates that introducing non-volatile

memory to the MN presents a unique tradeoff between memory array

latency and network latency. We observe that placing NVM cubes in

a specific order in the MN improves performance by reducing the

network size/diameter up to a certain NVM to DRAM ratio. Novel

MN topologies and arbitration schemes also provide performance

and energy deltas by reducing the hop count of requests and response

in the MN. Based on our analyses, we introduce three techniques to

address MN latency issues: (1) Distance-based arbitration scheme

to improve queuing latencies throughout the network, (2) skip-list

topology, derived from the classic data structure, to improve network

latency and link usage, and (3) the MetaCube, a denser memory cube

that leverages advanced packaging technologies to improve latency

by reducing MN size.

CCS CONCEPTS
• Hardware → Emerging architectures; Memory and dense stor-
age; Emerging interfaces;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080251

KEYWORDS
high-performance computing, memory cube, memory network, non-

volatile memory

ACM Reference format:
Matthew Poremba* Itir Akgun*† Jieming Yin* Onur Kayiran* Yuan

Xie*† Gabriel H. Loh* Advanced Micro Devices, Inc.*; University of

California, Santa Barbara†. 2017. There and Back Again: Optimizing the

Interconnect in Networks of Memory Cubes. In Proceedings of ISCA ’17,
Toronto, ON, Canada, June 24-28, 2017, 13 pages.
https://doi.org/10.1145/3079856.3080251

1 INTRODUCTION
Computing trends in multiple areas are placing increasing demands

on the memory systems of modern servers, supercomputers, and

even high-end workstations. Greater total memory capacity is re-

quired to solve huge scientific problems, tackle massive data an-

alytics challenges, and host larger numbers of virtualized servers.

For conventional memory systems (e.g., DDR4), increasing memory

capacity comes with a performance penalty. A typical server proces-

sor package has a limited number of memory channels. If a single

dual-inline memory module (DIMM) is placed on a channel, the bus

speed can typically be operated at its maximum speed. However, as

the number of DIMMs per channel increases, the electrical loading

often requires the bus to be operated at a lower rate, trading memory

bandwidth of the slower bus for greater memory capacity of extra

DIMMs. Furthermore, the ability to increase capacity is typically

limited to a few (e.g., three) DIMMs per channel.

The other approach to increase memory capacity is to increase

the number of memory channels per processor package. However,

this is very expensive in terms of the number of pins required and

the subsequent impact on package design. The DDR4 interface

requires 288 pins per channel; e.g., a typical four-channel server

processor would need 1,152 pins for memory interfaces alone. We

do not further explore increasing memory capacity by adding more

channels in this work.

One recent alternative approach is to combine 3D-stacking tech-

nology for higher per-package capacity with narrower high-speed

serial links, internal switches, and an abstracted interface (as op-

posed to low-level DRAM commands). The primary demonstrator

of this is embodied in Micron’s Hybrid Memory Cube (HMC) [33],

but the concept is being espoused by others [36, 37].

Current HMC capacity is 2-4GB per cube [33], although other

3D-stacked memory technologies, such as JEDEC’s HBM2, will

provide up to 8GB per DRAM stack [39]. Furthermore, the memory

capacity and bandwidth are expected to double with HBM Gen3 [7],

so there is no reason that a memory cube could not support similar
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capacities. By chaining (or arranging in other topologies) multiple

memory cubes, system capacity can be scaled while maintaining

high bandwidth through the use of high-speed point-to-point links

(i.e., unlike DDR, link speed does not fall off with more packages).

The tradeoff is the interconnect latency to reach a memory cube

can become non-trivial, especially if the destination memory cube

requires multiple hops to reach.

In this paper, we start off with a performance analysis of a variety

of different topologies of memory networks (MNs). From this, we

identify several bottlenecks in building large, terabyte-scale memory

systems. There is no single Achilles Heel for MNs, but the perfor-

mance challenges come from a combination of the latency of the

underlying memory technology, the multi-hop interconnect latency,

and queuing/arbitration issues in the MN. Based on these obser-

vations, we recommend several improvements to MNs to increase

performance for large-capacity memory systems. These include a

new MN topology inspired from classic “skip list” data structures, a

distributed arbitration mechanism to improve overall MN throughput,

and the mixing in of non-volatile memory technologies to achieve

different tradeoffs between interconnect latency (MN size/diameter)

and memory array latency. We also introduce a “cube-of-cubes” con-

cept that can further improve performance, especially for systems

with very large capacities.

2 BACKGROUND
In this section, we briefly discuss the limitations of the conventional

DDR interfaces and introduce recent memory technologies that

we use to form MNs, particularly, memory cubes and non-volatile

memories.

2.1 Limitations of DDR
As discussed in the introduction, bus-based memory interfaces such

as DDR4 typically take a performance hit as memory capacity is

increased. As more DIMMs are added to the bus, the increase in

electrical loading makes it harder to run the interface at the high-

est speeds. The exact supported bus speeds for a given number of

DIMMs per channel (DPC) varies by manufacturer and server part.

Table 1 shows example maximum bus speeds for DDR3 and DDR4

memories given different numbers of DPC. For DDR3, to operate at

the higher bus speed of 1333 MHz, only one DPC can be populated.

To achieve higher capacity with two DPC, the bus speed drops to

1066 MHz, and three DPC goes all the way down to 800 MHz.1

DDR4 has some improvements (especially if registered (RDIMM)

or load-reduced DIMMs are used), but the same general phenomena

apply. When going from one DPC to two, there is no drop-off in

bus speed, but adding the third DPC still incurs the performance

penalty. Attempts to support even more DPC to further increase

capacity exacerbate the electrical challenges of high-speed signaling

due to the additional impedance on the bus. For this reason in many

servers, three DPC is the limit supported. These examples illustrate

the fundamental tradeoff between memory capacity and memory per-

formance in conventional bus-based, multi-drop memory interfaces.

1There are variations where multi-rank DIMMs can cause the bus speed to drop compared to a single-

rank DIMM even for the same number of DPC, but such details are not key to the current discussion.

Table 1: Maximum memory interface speeds given different numbers of
DIMMs per channel for DDR3 [10] and DDR4 [15].

Number of DPC DDR3 DDR4

1 1333 MHz 2133 MHz

2 1066 MHz 2133 MHz

3 800 MHz 1866 MHz
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Figure 1: (a) Conceptual view of a Hybrid Memory Cube with
a logic layer and four memory layers, and (b) an example pro-
cessor with multiple HMCs arranged as four parallel chains.

2.2 Memory Cubes
The maturity of 3D die-stacking technology along with advance-

ments in short-range, high-speed signaling, have enabled a new mem-

ory package organization. The pioneering example of this approach

is embodied in Micron’s Hybrid Memory Cube (HMC) [20, 21].

Fig. 1(a) shows a conceptual depiction of a memory cube. 3D stack-

ing is used to integrate multiple layers of DRAM on top of a base

logic die. The logic die implements an array of memory controllers

tightly coupled to the vertical DRAM channels (“vaults”) through

arrays of through-silicon vias (TSVs), which has additional perfor-

mance and energy benefits from having the controllers physically

close to the DRAMwith a fixed amount of electrical loading (a single

controller-to-vault interface is represented by the vertical dashed line

in the figure). The logic die also implements high-speed serial links

to the outside of the package. These links can be used to connect to

a host processor or to other memory cubes. A switch on the logic

die connects the external links to the internal memory controllers.

HMC’s logic die also implements other functionality such as built-in

self-test and error correction, but we do not explore these additional

types of features in this work.

The external links of a memory cube can be operated at very

high speeds in part due to the point-to-point nature of the memory

organization. Fig. 1(b) shows a processor connected to four chains

with four memory cubes per chain. Each link starts at one package

and ends a short distance away at the next package; this is in contrast

to a DDR bus that traverses a greater distance on the motherboard

and may have a variable number of DIMMs. HMC 1.0 offered

links speeds up to 15 Gbps, for a peak aggregate bandwidth of 240

GB/s [20]. HMC 2.0 (short-range version) supports link speeds up

to 30 Gbps (peak aggregate bandwidth of 320 GB/s/link) [21]. In

contrast, the fastest current DDR4 bus speeds are only 1.6 Gbps

(25.6 GB/s/channel). Furthermore, the DDR4 interface requires 288

pins per channel, while HMC 2.0 only needs 66 pins per link; i.e., for

the same pin cost on the processor package, one could have over four
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times the number of HMC 2.0 links (this is a simplistic comparison

as there are other costs apart from pins).

Another advantage of the memory cube approach is that the

package-to-package links make use of a much more abstract in-

terface than DDR [36]. DDR requires the host processor’s memory

controller to send a sequence of explicit, low-level, carefully-timed

commands (e.g., precharge, row activation, column read). With an

abstract interface, an asynchronous protocol is instead employed,

where the host processor can, for example, issue a “read” command

to the memory cube, which then internally can decide how (and

with what timing) to read the data from the DRAM. Whenever the

data access has completed, the memory cube’s logic die formulates

a response packet to be sent back to the host processor. Such an

abstracted interface decouples the semantic actions (e.g., read) from

the low-level device behaviors (e.g., row activation).

Baseline Memory Cube: We briefly describe our baseline assump-
tions for the organization of the memory cubes assumed throughout

the rest of this paper.2 The logic die at the bottom of the stack

contains the SerDes (serialization-deserialization) interfaces for the

external high-speed links. The SerDes are coupled to a switch that

either forwards requests out of the appropriate external link, or to

one of the internal memory controllers. The memory stacked on

top of the logic die provides multiple channels for independent and

concurrent accessing of the memory resources. We do not assume

any specific memory layout; vertical “vaults” like in HMC could

be used, or each layer could implement one or more independent

channels as in HBM. The memory controller receives a request, and

then handles any further processing (e.g., issuing of device-level

sub-commands) required to complete the request.

While memory cubes could support additional functionality, this

work does not consider any further capabilities beyond routing re-

quests and performing reads and writes of memory (along with any

basic “maintenance” operations required for proper operation, e.g.,

refresh). These could include but are not limited to built-in self-

test, ECC, repair, thermal sensing and management, or processing

in-memory features. The switch within the logic layer could be a

single monolithic multi-ported switch, or it could consist of multiple

switches or routers arranged as a small network on chip.

2.3 Memory Networks
Industry efforts from HP [1] and IBM [32] demonstrate the trend

towards interconnecting memory modules to enable efficient main

memory expansion. In academia, several key prior works have al-

ready started the exploration of Memory Networks (MNs). Kim

et al. [24] introduced the term Memory-Centric Network (MCN)

and then later shortened it to just Memory Network (MN) [26]. We

follow the more succinct MN terminology here.

The past works have considered a variety of computing scenarios

including multiple CPU packages and CPUs with multiple discrete

GPUs. Examples of these are shown in Fig. 2(a) and (b). A key

assumption in these past systems is that all memory cubes are con-

nected to all other memory cubes. This may be appropriate for the

multi-GPU systems where the MN not only provides the memory

2We use the term “Memory Cube” instead of Hybrid Memory Cube or HMC, because HMC is a
definition for specific family of memory cubes. As this work considers future cube organizations, the
more general term Memory Cube was deemed to be more appropriate (as well as to not be misleading

about HMC).

CPU CPU CPU GPUGPU

Memory
Network (MN)

APU APU APU APU APU
Dir Core

(a) (b)

(c) (d) (e)

Core

Figure 2: Memory Networks (MNs) connecting (a) multiple
CPUs and (b) a CPU with multiple GPUs. Disjoint per-port
MNs for (c) one APU and (d) two APUs. (e) Example showing
the ineffectiveness of fully-connected MNs in a cache-coherent
multi-package system.

storage, but also the datapath for the disparate GPU units to access

all of the shared memory.

In this work, our baseline system consists of a high-performance

heterogeneous processor consisting of CPU and GPU resources

integrated in a single chip (sometimes referred to as an accelerated

processing unit or APU). The APU supports multiple memory ports,

but we make a key assumption that simplifies the MNs. In particular,

as is typically done for systems today, the physical memory address

space is interleaved across the APU’s memory ports (this applies

for CPU-only configurations as well). As a result, each memory

port serves a disjoint subset of the memory space, which means that
there is no need for memory cubes from one port to be connected to

memory cubes on another port.3

Fig. 2(c) and (d) shows examples of such MN organizations for

one and two APU packages, respectively. Note that in particular

for the dual-package configuration in Fig. 2(d), requests from the

right APU package destined for the left set of memory cubes must

first route to the left APU package. At first glance, it would seem

desirable to route such requests directly to the left memory cubes

through aMN connecting all cubes, which would leverage the greater

interconnect bandwidth of the MN and possibly reduce the end-to-

end request latency. However in a cache-coherent system, requests

would likely first need to route to the left APU anyway to consult

cache coherence structures (e.g., directories); once a request has

been routed to the left APU for coherence reasons, there is no point

in sending the request back to the right APU only to re-route through
the whole MN as shown in Fig. 2(e). As a result, we focus on MN

organizations similar to those shown (highlighted with a dashed box)

in Fig. 2(c).

2.4 Non-Volatile Memories
Various emerging memory technologies (e.g., phase-change memory,

STT-MRAM, memristors, 3D-XPoint) are gaining traction to be

used as replacement for, or together with existing technologies,

in caches and main memories. This trend is primarily due to their

advantages such as non-volatility, density, and decoupled sensing and

3The exception is to support reliability schemes where a hardware failure at one memory port can be
compensated for by routing requests around through another port. As this work is not focused on RAS
issues and our proposals can be generalized to include some of this type of redundancy, we maintain

this simplifying assumption of disjoint per-port address spaces through the rest of this paper.

680



ISCA ’17, June 24-28, 2017, Toronto, ON, Canada M. Poremba et al.
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Figure 3: (a) APU with eight memory ports, each with a disjoint
MN. The MN topologies evaluated in this section include (b)
chain, (c) ring, and (d) tree topologies.

buffering. DRAM can entirely be replaced with NVM [27, 28], or

can be reorganized in a multi-level hierarchy with different memory

technologies. In this paper, we consider mixing DRAM and NVM

memory cubes within the same MN. Such an organization requires

management of data migration across different technologies/levels

of memory, and metadata management. Prior works have attempted

to address these issues [16, 30, 31, 41]; in this work we rely on the

existence of appropriate heterogeneous management mechanisms

(we do not try to re-invent anything on this particular topic as that is

not the focus of the current paper).

3 BASELINE MN PERFORMANCE
We begin with a performance analysis and deconstruction of a few

simple MN systems. Fig. 3(a) shows our baseline APU system. The

APU has eight memory ports, each connected to an independent

MN serving a disjoint slice of the global physical memory address

space, as discussed in Section 2. The full details of the APU micro-

architecture and other evaluation details can be found in Section 5.

Connected to each of the APU’s memory ports is a set of memory

cubes interconnected in identical topologies. We study a system

with a total memory capacity of 2TB, where each memory cube

has a 16GB capacity (technology assumptions are also explained

in Section 5). This leads to a total count of 128 memory cubes for

the entire system, or 16 cubes per memory port. In terms of mem-

ory management, we make a conservative assumption that memory

requests are uniformly interleaved based on their addresses. This
means that for a system with 50% capacity from NVM, half of the

memory requests will go to the NVM cubes. Although this work

does not focus on the management of heterogeneous memory, prior

work [17, 23, 30, 31, 41] exemplify how one can make use of the

underlying MN more effectively.

We evaluate three different MN topologies. The first is a basic

chain of memory cubes, shown in Fig. 3(b). This baseline minimizes

the number of ports required per memory cube and has similarities

with buffered DRAM topologies [18], but also suffers from large

hop counts to reach the further memory cubes in the chain. The

second is a ring topology, shown in Fig. 3(c), that halves the average

hop count compared to the chain as requests can take the shorter of

the upper or lower branches of the ring. The last topology is a tree,

shown in Fig. 3(d), which in theory makes the most effective use of

the memory cube’s multiple external links. This results in a MN that

has a worst-case hop count that increases only logarithmically with

the number of memory cubes in the network. We do not consider

a mesh in this work as the average hop count is larger than a tree
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Figure 4: Speedup comparison of DRAM memory networks
normalized to a chain topology.
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Figure 5: Breakdown of memory request latency in DRAM
memory networks normalized to chain topology.

no matter which memory cube is connected to the host, and for the

reasons discussed in Section 2.3. Furthermore, we model HMC-like

memory packages with 4 ports per package and only create networks

utilizing the routers on the packages rather than adding specialized

intermediate routing devices to the PCB. This means that high radix

networks and networks requiring intermediate routers with no exter-

nal link, such as flattened butterflies, distributed networks, all-to-all,

etc. [24] are not possible.

3.1 Speedup Results
As a first cut, we compare a simple speedup of a MN consisting of

all-DRAM cubes. Fig. 4 compares the speedup of the topologies nor-

malized to the chain, which always provides the lowest performance.

As expected, the topology with the fewest hops (i.e., tree) provides

the best performance.

To further reveal potential bottlenecks in the topologies, we look

at the breakdown of network latencies in both directions (to and

from the destination cube) compared to the core access latency of

the memory array.

3.2 Latency Breakdown
Fig. 5 shows the breakdown of latency to memory, latency in memory

(i.e., memory array access), and latency back from the memory cube.

We make three key observations revealing the potential bottlenecks

that we later address in Section 4.

First, in most workloads, the latency spent in the network is sig-

nificantly higher than latency of the memory core. This is especially

true during periods of high network load. The discrepancy between

to and from memory latencies occurs due to the network’s single

link which by default prioritizes responses (i.e., read data or write

acknowledgment) over requests in order to prevent deadlocks from

older responses being blocked by newer requests. This causes higher

queuing latency at the outgoing memory port as requests are backed
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up waiting for responses to free up buffer slots. Overall, we ob-

serve that the topologies with fewer hops greatly reduce the network

latency while the latency in memory remains relatively constant.

Second, differences between latency breakdowns across work-

loads is caused by the ratio of reads to writes in workload. We

assume read responses and write requests (i.e., packets with data)

are 5 times larger than control packets (i.e., read request and write

response). For example, the workloads KMEANS, MATRIXMUL,

and NW all have at least two reads for every one write. The BACK-

PROP workload has significantly more writes than reads, and the

remaining workloads have nearly identical numbers of read and

write requests. The NW workload also has the lowest network load

of all the workloads plotted, and therefore has the highest percentage

of latency spent performing the memory array access due to less

contention in the network.

Last, to gain additional insights into where the cycles are be-

ing spent, we analyzed the waiting times observed in the various

structures in the per-cube routers. In particular, we observed that

the queuing latencies for the router input-ports were highly unbal-

anced, with the cubes closer to the processor showing more problems.

This is because the default router implementation uses a locally-fair

round-robin arbitration scheme that picks from each input queue in

a uniform manner. However, four of the input queues come from the

cube’s local memory vaults, while the remaining input queues serve

return traffic from other cubes. As an extreme example, the chain

topology would pick the local input queues four out of five times

(80% service) while picking the port connecting to the rest of the

chain only one out of five times (20% service). Such unfairness in

multi-stage arbitration has been previously observed for a two-stage

3D router [22], but with up to n stages in a MN, the effects are
that much worse. Hence, in Section 4.1 we propose a globally fair

arbitration technique to overcome the unbalanced queuing latencies.

3.3 Heterogeneous Mix of Cubes
The somewhat unsurprising observation that having network latency

scale with the number of hops leads us to the conclusion that in-

troducing higher density memory cubes can allow us to reduce

the number of hops to decrease network latency. Using NVMs in

memory cubes can provide this density benefit at the cost of higher

latency. However, because of the magnitude of the network latency,

the increase in access latency may be worthwhile to save on net-

work latency while still reducing the overall round-trip latency. The

heterogeneity in the memory network introduces non-uniformity

in memory access, in terms of both topology and memory technol-

ogy. Therefore approaches addressing non-uniform memory access

(NUMA) systems can also be considered for MNs.

In the limit, given n memory cubes and a bound on the number of
ports/links per cube (as well as motherboard routability concerns),

topology selection can only go so far to reduce the number of hops

through the MN interconnect. Another approach is to attempt to

reduce n directly. To do this, we take advantage of emerging non-
volatile memory technologies that provide greater storage density

compared to conventional DRAM. For a memory technology such as

phase-change memory (which is what we assume in our evaluations),

we project that a memory cube can provide 4× as much capacity
(e.g., 64GB per NVM cube compared to our baseline 16GB per

DRAM cube). If all cubes are replaced by NVM, then the MN size

APU

(a)

APU

(b)

APU

(c)
DRAM cube
NVM cube

Figure 6: Example MN topologies using (a) only DRAM mem-
ory cubes, (b) only NVM memory cubes with 4× the capacity
per cube, and (c) a mix of both DRAM and NVM where each
type provides half of the MN’s total capacity. The figure only
shows a single memory port, configuration is repeated across
all ports.

can be reduced to only n
4 cubes, with a corresponding reduction in

MN hop counts. However, this is not free, because the latency and

energy to read, and especially to write, for NVM is worse than of

DRAM.

Instead of implementing a MN with only DRAM (minimizing

memory array latency, shown in Fig. 6(a)) or with only NVM (min-

imizing interconnect latency, shown in Fig. 6(b)), we propose to

build the MN with a mix of memory technologies. By varying what

fraction of a MN’s capacity is provided by DRAM versus NVM,

we can vary how much of a request’s latency (on average) comes

from interconnect versus memory technology. Fig. 6(c) shows a

MN where half of its capacity is provided by DRAM and the other

half from NVM. This results in two NVM cubes and eight DRAM

cubes, for a total MN size of n=10 cubes (compared to n=16 for
the all-DRAM case). The examples in Fig. 6 show chain topologies

simply for ease of illustration; other topologies can be constructed.

We performed a similar performance analysis using different

ratios of NVM to DRAM. Throughout this work, the different ratios

of NVM to DRAM are labeled by the percentage of DRAM in the

MN by capacity. For any MN where multiple technologies exist,

it is possible to change the locations of the memory cubes in the

network. In other words, a MN with both NVM and DRAM can

choose to place the NVM further away from or closer to the system

port. These are differentiated using the suffixes -L (last) and -F

(first), respectively. This location refers to the position of the NVM

cubes. The topologies are differentiated using their first letter as the

suffix. For example, 50%-C (NVM-L) is a MN designed with a chain

topology with 50% DRAM and 50% NVM, where the NVM cubes

are placed further away from the processor. A 50%-C (NVM-L)

configuration is depicted in Fig. 6(c).

Fig. 7 shows the speedup results for the tree topology only. These

are again normalized to the performance of a 100% Chain. The

key takeaways from this figure are that it is beneficial to use some

amount of NVM in the MN. There is no clear best topology in this

case, however, the 50%-T (NVM-L) topology performs the best on

average. The 0%-Tree varies highly with the workload. Workloads

with the lowest network contention tend to show degradation, for

example NW. This happens since the latency spent in network is not

as prominent as in other workloads, where the dramatic reduction

in hop count begins to reduce latency more than the NVM cubes

increase latency.

The overall latency breakdown consists of very similar results to

the all-DRAM case. In particular, there is very unbalanced request

and response latency, whereby most workloads exhibit behavior

where the request path is significantly longer than the response path.

Additionally, workloads with higher read to write ratios typically
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first (closer to the processor).

have more balanced latency breakdowns. Due to this similarity, we

focus on network latency optimizations over memory core latency.

4 ADDRESSING MN LATENCY ISSUES
The analysis from the previous section showed that various factors

of the MN interconnection are responsible for the majority of a

request’s end-to-end latency. In particular, low hop count topologies

such as tree topology performed significantly better than a ring

or chain topology. Additionally, we observed a large increase in

latency within the network due to arbitration techniques and packet

prioritization.

In this section, we first introduce a distance based arbitration

technique which reduces unbalanced input port selection by attempt-

ing to service older requests first. We then propose two topologies

which attempt to exceed the performance of a tree topology. The

first topology exploits the fact that memory traffic is kept coherent

beyond the system port and uses this to provide more paths based on

request type. The second is a cluster-like topology which leverages

die-stacking further in order to reduce the hop count beyond that of

a tree topology.

4.1 Fair, Distributed Arbitration
Section 3 showed how a locally fair round-robin arbitration on a

memory cube’s router can lead to global unfairness by introducing

significant queuing delays for the ports connected to more distant

cubes, also referred to as the “parking lot problem” [40]. If the router

was made aware of how many requests were pending not only at a

particular input port, but also downstream at any additional memory

cubes that have to eventually flow back through this port, then the

router arbitration could use a weighted round-robin approach where

the probability of picking a port is weighted by the number of down-

stream requests that are trying to make their way back to the host.

While this approach would work well, it requires routers to maintain

global knowledge of all other downstream memory cubes, which

would be difficult to implement in practice.

Another alternative is to use age-based prioritization. If the router

arbiter knows which requests are the oldest, then no request will be

starved for very long. In particular, if all requests are injected into the

MN at approximately the same time (subject to the injection band-

width limit on the first MN link), then having each router favor the

oldest requests will tend to cause all of these requests to be returned

to the host ahead of any later requests. This approach also performs

well to alleviate high-contention scenarios, but unfortunately it also

has a significant implementation challenge. In particular, each mes-

sage would have to have some form of timestamp embedded in it.

However, typical flit header formats do not provide very many (if

any) unused bits that could be used to store a timestamp.

We make the observation that in general, requests that are destined

for cubes that are farther away (larger hop count) will have longer

end-to-end latencies, and therefore are more likely to be among

the oldest requests seeking arbitration at a router. Therefore, we

propose a router arbitration scheme that uses a message’s distance
as a proxy for its age. The distance can be derived directly from

a message’s header flit; the header encodes source and destination

information, which combined with knowledge of the MN topology,

can be translated into a hop count. This information can be pre-

computed and stored in a very small hardware lookup table for the

router arbitration logic. In this case, only about 8 bytes of data are

needed so hardware cost is negligible. Using this information, our

arbitration performs a weighted round-robin, where the input port

selection is weighted by the distance to the memory cube from where

the request came from.

4.2 The Skip-List Topology
The results from Section 3 showed that the tree topology consistently

provides the best overall results. This in of itself is not very surprising

as the average hop count increases at a much slower rate than the

chain or ring (for increasing MN size). One observation about the

tree topology is that the majority of its links, apart from those near the

“root,” tend to be under-utilized. This is because the total throughput

of the MN is ultimately still limited by the single link connecting

the MN back to the host memory port.

Since we are evaluating a CPU-centric MN, memory requests and

responses are past the coherence ordering point in the system. In

directory-based systems, reads to an address with an outstanding

write must wait until a write acknowledgment is received at the

directory. We can take advantage of this by utilizing “non-coherent”

routing. This allows for several interesting network routing policies

that are not possible when coherence is required. For example, we

are allowed to reorder requests in the network which allows for

request priorities to be specified. When injecting to the network, the

router output queue could skip over sending write requests at the

head of the queue in favor of read requests. Another possibility is

to defer non-critical path writes to be routed through lesser used

non-optimal routes to free up link utilization for reads. We examine

one such topology employing the last technique mentioned.

Taking inspiration from classic data structures, we propose or-

ganizing the memory cubes as a “Skip List” [34]. The traditional

skip list consists of a regular linked list augmented with additional

pointers that provide a path to bypass or short-cut around large sec-

tions of the linked list. The “length” of these bypass pointers (i.e.,

the number of nodes skipped) can be chosen such that the average

number of hops to reach a node is logarithmic in the number of

nodes in the entire list (same as a tree). Our implementation of the

skip-list topology is similar to that of express cubes [14], which

proposes additional express channels to reduce network diameter.

Fig. 8 shows a 16-node MN organized as a skip list. There is a

central sequential chain, analogous to a conventional linked list. The
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Figure 8: Example skip-list topology for 16 memory cubes. The
bold path shows the route to the farthest memory cube, and
the dashed lines indicate links that are only ever used by write
requests.

additional memory cube ports are used to implement the bypass

or “skip” links. The set of highlighted (bold) links show how the

farthest cube can be reached in only five hops (i.e., logarithmic in

the number of cubes).

Using the skip-list topology as is results in a topology that with

a lower branching factor than the baseline tree shown in Fig. 3(d),

which is a ternary (base-3) tree.4 Some of the links (shown dashed)

would not ever be used because they are not part of the shortest

path to any of the cubes. What we instead propose is to differen-

tiate the MN traffic based on read and write requests. For most

workloads, read latency directly impacts performance, but writes

can typically be handled off of a program’s critical path so long

as enough aggregate bandwidth is provided. Our skip-list topology

routes read requests along the shortest paths to the destination mem-

ory cubes, fully utilizing the skip links where possible, different

from the routing on express channels. All write requests are routed

along the slower, central set of sequential “chain” links. This in-

creases the latency per write request, but removes them from the

more performance-sensitive skip links for reads. We effectively trade

off some of a tree’s fan out (by backing off from a full ternary tree)

to shunt off lower-priority write traffic away from the more critical

read requests.

As reads and writes to the same address can now take different

paths through the MN, there exists the possibility that a read de-

pendent on a write could reach the destination memory cube first,

introducing the possibility of a consistency violation (i.e., the read

receives a stale value from memory). It is therefore sufficient that

the requirement of a directory stalling a read request until a write

acknowledgment is received holds true for a skip-list MN.

4.3 The MetaCube
The last, most aggressive optimization is to condense the MN into as

few cubes as possible. A similar concept to reduce average network

latency was adopted by earlier works on bristled [29] and concen-

trated networks [9]. In our case, we propose leveraging advanced

packaging technology to effectively build a “cube of memory cubes,”

which we call a MetaCube. The MetaCube can use a passive silicon

interposer with an interface chip for router or slightly smaller active

interposer to integrate multiple memory cubes into the same package.

Fig. 9 shows a MetaCube with four DRAM-based memory cubes

and an interface chip stacked on a passive silicon interposer.5

The external links come from the package pins to the central

interface chip in a similar manner to a normal memory cube. The

router on the interface chip connects to the different memory stacks

through direct point-to-point links across the interposer. Routers

4The skip-list ends up with an average branching factor somewhere between 2 and 3.
5The same general topology can be implemented on an MCM substrate, with the primary tradeoff

being the width of the links between the central interface chips and the individual cubes.
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Figure 9: Example MetaCube organizations. Structural view of
a 4-DRAM stack MetaCube, and (b) the block-diagram view of
the logic layers.

on the logic layer of the memory cubes then forward requests to

the corresponding memory controllers. Fig. 9(c) shows an example

MetaCube MN consisting of four MetaCubes, each internally pro-

viding four DRAM memory cubes. This relieves the limitation of

4 ports per memory package by being able to design a high-radix

router on an interposer. The maximum number of memory packages

in a MetaCube is still limited by the maximum size of an interposer,

however, so it is not always possible to create a single MetaCube

with an all-to-all network on the interposer. Fig. 9(c) shows an ex-

ample providing 16 cubes worth of capacity with a greatly reduced

worst-case hop count to the furthest memory package.

The MetaCube is not without its own costs. In particular, addi-

tional costs must be paid for in terms of the silicon interposer or

MCM and interface chips. The package size will also be larger than

a conventional memory cube, which will also be more expensive.

The power-per-package also increases, which could further increase

package-related expenses if more sophisticated cooling solutions are

required (although the reduced hop count will at least help reduce

interconnect-related power consumption).

5 EVALUATION
We explore the design space of MNs using a heterogeneous com-

puting platform consisting of CPU and GPU resources executing a

mix of scientific computing workload proxies and high bandwidth

GPGPU workloads. We choose these workloads as they provide a

high range of memory footprint sizes and bandwidth usage which

expose solvable issues with memory networks. Workloads chosen

are taken from the AMD SDK [2] and Rodinia [11, 12] suites. Other

large footprint workloads such as big data and cloud applications

likely exhibit similar issues solvable by the techniques we describe.

The GPU compute units are provisioned similarly to those de-

scribed for AMD’s GCN pipelines [6]. Our system is configured

as a 4x8 mesh of GCN pipelines, with a CPU mainly used to per-

form operating system related system calls such as loading input

data and dispatch kernels to the GPU. The key system configuration

parameters are listed in Table 2.

Our evaluation implements MNs within the gem5 simulator as

part of the Garnet network [3]. We utilize Garnet’s default routing
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Figure 10: Speedup comparison using only distance-based arbitration technique. Only baseline topologies are compared to show
impact of distance-based arbitration alone.

Table 2: List of Parameters in Evaluated System.

Parameter Value

Compute Units 32

Clock Speeds 1GHz (GPU), 3GHz (CPU)

GPU L1I$ 32kB 8-way

GPU L1D$ 16kB 16-way

GPU L2$ 2MB 16-way

Memory Ports 8

Total Memory 2TB

Stack Capacity 16GB (DRAM), 64GB (NVM)

Banks / Stack 256

DRAM Timings tRCD=12ns, tCL=6ns
(Major) tRP=14ns, tRAS=33ns

NVM Timings tRCD=40ns, tCL=10ns
(Major) tWR=320ns, 500MHz

DRAM Read/Write 12 pJ/bit [33]
NVM Read/Write 12 pJ/bit / 120 pJ/bit

Network Energy 5 pJ/bit/hop

implementation to find shortest path routes to each memory package

and quadrant of the specific memory controller within the package.

This network is modeled as high-speed SerDes links to pipeline

packetized data through the MN. For the memory cubes, we evaluate

assuming HBM-like memories stacked on a base die with a 4-link

router, 4 quadrant design similar to HMC. This allow us to simulate

the intra-cube memory timings (i.e., the turnaround time from when

a request packet arrives at a cube to when a response packet is

sent) using memory timing parameters pulled directly from HBM

datasheets.

The internal configuration of each memory cube distributes the

memory banks evenly across four quadrants, also similar to HMC.

Requests which arrive to a link in the “wrong” quadrant are imposed

with a 1ns latency to model intra-cube routing to the correct quadrant

and back. Links connecting memory packages are assumed to be

narrow 16-bit links running at a frequency of 15GBps [33]. We

assume an additional 2ns latency to account for time needed for

serialization, scrambling, descrambling, and deserialization circuitry

when traversing each SerDes link since these circuits have a non-

zero latency even if they are pipelined. We experimented modifying

this parameter and found that 2ns made little difference compared to

no latency, however larger values (e.g., 10ns) have a large impact on

network latency.

Each memory package has a single link connection between

another memory package or the host, with four links per memory

package. Requests that must route through packages are assumed

to be descrambled and deserialized in order to read packet routing

information and traverse the internal package switch and therefore

incur the additional 2ns latency per hop. Each memory package

contains a centralized switch that uses a round-robin arbitration

scheme to select between internal quadrants and external links to the

MN.

Internally within the system processor, we assume there are 8

ports connected to an external link of a memory cube. Addresses are

mapped to a port from within the system processor distributed using

address interleaving and hashing techniques for MN load balancing.

Requests leave and return through the same port to simplify cache

coherence. In order to provide some level of memory parallelism,

and in order to stress TB sized memory in simulation within a rea-

sonable turnaround time, addresses are mapped to ports at a 256 byte

granularity interleaving. This size was chosen empirically based on

a sweep of various mapping sizes. In the presence of spatial locality,

larger mapping granularities (e.g., 1024 bytes) caused increases in

network latency large enough for performance degradation. The

smallest size, 64 bytes, caused reduction in row-buffer hits within

the memory cubes.

We estimate the dynamic energy used in the network using av-

erage picojoule-per-bit numbers to provide a fairer comparison of

NVM and DRAM energies. We assume that network traffic incurs an

energy cost at each hop in the network, and we break up NVM values

into read and write energies. For network energy, we assume 5pJ/bit

for each hop. We assume 12pJ/bit for DRAM [33] and 12pJ/bit for

reads 120pJ/bit (10x read energy) for writes with a PCM-based NVM

cube. These results do not include static energy, as the static power

savings is highly dependent on the underlying process management

assumptions (e.g., race-to-idle), although of course NVM provides

lower (near-zero) standby power. Note, however, that the memory

cube SerDes links will likely still consume non-trivial amounts of

power even during “idle” periods because of performance concerns

related to the long latencies required to retrain the SerDes links.

5.1 Distance-Based Arbitration
We compare our distance-based arbitration approach against the

baseline localized round-robin arbitration scheme in each memory

cube, with the speedup over round-robin shown in Fig. 10. In order

to highlight the impact of the arbitration technique alone, we only

compare against the original baseline topologies shown in Fig. 7.

Originally, the study yielded mixed results. In particular, 50%

Chain, Ring, and Tree NVM-L topologies show opposite trends

compared to 50% Chain, Ring, and Tree NVM-F topologies. One

insight from this is that while we attempt to use distance as a proxy
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Figure 11: Comparison of Tree topology compared to our SkipList- and MetaCube-based topologies. The default localized round-
robin arbitration is used in these results. All results normalized to 100% Chain.
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Figure 12: Overall speedup with all concepts proposed in this paper applied Tree topology, SkipList, and MetaCube using distance-
based arbitration. All results normalized to 100% Chain.

for age, the NVM-F responses will typically be older due to the array

latency of NVM. On the other hand, when NVM is placed further

from the host processor, the responses returning upstream are nearly

guaranteed to be the oldest responses and are much more likely to

be selected. In the cases of all-DRAM and all-NVM the average

results are very similar. Due to the memory packages having the

same latency, the performance results only vary on the distribution

of the requests latencies within the cubes (i.e., refresh occurring or

unbalanced queuing latency within a specific cube).

In most topologies our distance-based arbitration provides ben-

efits preventing local memory controllers from taking too much

weight over request and response packets passing through the mem-

ory cube as well as reducing the discrepancies between to- and

from-memory latency. Although performance generally increases

when using distance-based arbitration, we observed the technique

can have adverse effects on topologies such as skip-list and in net-

works with different mixes of technologies within memory cubes.

In a naive implementation applied to a skip-list, older write re-

quests and responses can be selected over younger read requests and

responses due to the longer write path in the network. Similarly, as

evidenced by Fig. 10, the technique can have detrimental impact on

MNs with NVM placed first, as older responses are predicted to be

from the incoming external link, when requests serviced by NVM

are actually older.

To combat these issues, we augment our original implementation

discussed in Section 4.1 to be aware of both the network topology as

well as the memory technology type of the response’s source. This

allows our distance-based arbitration to better estimate the age of a

response. This implementation is applied to our final results shown

in Fig. 12.

5.2 Skip-List and MetaCube Topologies
Here we compare the tree against the Skip-List andMetaCube topolo-

gies by themselves without the usage of distance-based arbitration.

The skip-list is effectively a slightly lower arity tree (compared to

the default ternary tree), with links to provide extra paths for lower

priority requests. The MetaCube is a cluster like topology which sim-

ilarly aims to reduce hop distance without breaking the constraints

of the memory cube package. Results of both topologies are shown

in Fig. 11 and Fig. 12

Since the average hop count of skip-list is similar to that of a tree

topology, we expect it will perform similarly to that of a tree. On

average, the skip-list topology provided only slight benefit over the

corresponding tree topology for each DRAM:NVM ratio. For most

workloads, contention of read requests due to writes was not great

enough to cause the additional write path to make a large impact. The

largest average benefit of the skip-list topology is exhibited in the

NVM-L topologies. In these configurations, writes which may other-

wise fill the queues of local memory vaults are pushed downstream

through the network, limiting the amount of performance critical

reads blocked in the network at a memory cube’s external input port.

This phenomenon is not exhibited in most other configurations.

One potential problem with a skip-list topology is always routing

writes through the longer path. In some cases, it is beneficial to

allow writes to use the skip-paths in presence of very few reads.

This allows workloads with either large bursts of write requests or

heavy usage of read-modify-writes, for example, to regain some of

the performance loss compared to tree topologies. This concept is

integrated with our final results in Section 5.3.

Next, a MetaCube topology has the potential to provide an even

smaller hop count than either tree or skip-list. This allows for the

largest speedup potential of any other given topology across all
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Figure 13: Average total memory access latency when the host processor has four or eight (baseline) port with a fixed 2TB of memory
capacity. Note that the 4-ported system therefore has twice as many packages per port.

workloads as the cost of additional manufacturing. Since most of the

memory round-trip latency consisted of to-memory latency in the

majority of workloads, the low hop count of the MetaCube provides

significant speedup improvements.

Fig. 11 demonstrates that MetaCubes outperform other types of

topology in each simulated run. Different from the previous topolo-

gies, the MetaCube is the first topology in which the 100% configura-

tions provided better performance than all topology mixes containing

NVM. This occurs since the hop count of a MetaCube configuration

is near the threshold where memory array latency, which is higher in

NVM, begins to become dominant over both to- and from-memory

latency.

However, although Fig. 11 indicates that all-DRAM topologies

provide the best performance overall, static power savings from

incorporating NVM into the memory system are beneficial in terms

of power while yielding nearly the same performance as in the all

DRAM case. From our results less than 1% performance degradation

was incurred compared to all DRAM MetaCubes.

5.3 Combining All Techniques
In this work so far we have evaluated a distance-based arbitration

technique, skip-list topology, and MetaCube-based topology. Here

we evaluate the combinations of each proposed topology while

using distance-based arbitration. Using insights gained from the

evaluations throughout this section, we were able to further improve

each of the topologies.

In particular, several additions were made to the distance-based

arbitration to provide better average performance to topologies. First,

our table used to calculate distance was augmented with knowledge

of request type priority, allowing writes to be further delayed. This

was especially important in the skip-list topology. Next, the same

table was augment with knowledge of the memory cube types at

each source/destination node allowing it to further weight requests

coming from, for example, NVM. Last, we were able to monitor

periods of high write traffic at the system port with some hysteresis

in order to allow writes to route through shorter network paths in the

presence of a skip-list configuration.

The values used to calculate approximate age using distance as

a proxy were determined empirically using both average network

hop latency and average memory access latency for each cube tech-

nology type. Fig. 12 shows the results of this tuning. Compared to

the previous results in Fig. 11 we were able to obtain much better

average speedup for skip-list in not only 100% MNs, but in 50%

NVM-L networks as well (e.g., in BIT and BUFF). This is primar-

ily an artifact of distance-based arbitration’s ability to push slower

NVM writes further downstream and utilize shorter skip-paths for

writes.

As demonstrated in these final results and across many of the

previous results, the BACKPROP workload saw the most benefit

from each of our experiments. This workload, compared to the

others, was by far the most write intensive workload in our suite.

In contrast, KMEANS was the most read intensive workload in

our suite. However overall each workload in isolation exhibited a

respectable increase in performance by employing the methods in

this work.

6 ANALYSIS
In our evaluations so far, we have seen that MNs are highly sensitive

to various configuration parameters, topologies, and workloads. In

order to get a better handle of the different parameters which can

cause a large impact, we vary the size of the MN in two dimensions.

Until now we have simulated a system with 2TB of memory. This

is approximately the inflection point where memory cubes begin to

overcome the limitations of DDR as discussed in Section 2.1. We

reduce the capacity to 1TB in order to decrease the “length” of the

MN. Also discussed in Section 2.1 is the limitation on the number

of pins available to the host processor package. We study decreasing

the number of system ports to decrease the “height” of the MN. Here

we examine both of these “dimensions” in order to construct a short

sensitivity study.

6.1 Number of System Ports
Although eight ports is a reasonable estimate for the available num-

ber of pins the host processor could allocate to memory connections6,

some pin-constrained systems may only support fewer ports. Here

we investigate the impact of allocating fewer pins to memory by

having only four system interfaces to the MNs.

When the number of ports is reduced, the number of memory

cube packages per port must be increased in order to provide the

same amount of memory capacity. This will generally lead to larger

networks, a higher number of average hops, and therefore a per-

formance degradation. Fig. 13 shows the performance loss when

decreasing the number of system ports from eight to four. In addition

to higher network latency, reducing the number of ports also requires

more requests to contend for the same output ports on the processor.

For topologies that grow in a linear fashion (e.g., chain and ring),

hop counts double each time the number of ports is reduced by half.

This causes the fastest rise in MN latency when compared to other

6While current systems only have on the order of four DDR channels per package, recall that HMC-

style interfaces are significantly narrower and so eight ports is very reasonable.
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Figure 14: Average system speedup when moving from 2TB to
1TB.

topologies. In the case of NVM configurations, 50% NVM-L has

the highest degradation. This is again caused by hop count as 50%

of requests must be routed to the furthest hop. All-NVM topologies

exhibit the lowest degradation on average since these configurations

are bound more by memory latency than any other configuration.

Across some workloads, (e.g., BACKPROP and NW) there is

a negligible increase (1-3%) in the performance of the MetaCube

topologies while the remaining topologies have degraded perfor-

mance. In these cases the MetaCube provides similar average hop

count as the eight-port system with only a marginal increase in

latency. The difference in performance for MetaCubes is largely de-

pendent on differences in internal routing within the host processor

compared to the eight-port case. Furthermore, workloads such as

KMEANS and NW show very little difference in performance.

6.2 System Capacity
The total memory capacity of a system has a large impact on network

performance and the overall design because the number of memory

cubes is dependent upon it. In systems where one specific topology

performed the best, smaller-sized systems may have different charac-

teristics. We reduce the capacity of the system by half while keeping

the number of memory cubes the same. For the purpose of this study,

we assume the workload’s memory footprint is just under the total

memory capacity such that it needs to access all cubes.
Fig. 14 shows the speedup of a 1TB system over the 2TB baseline.

While the reduction in the number of ports intuitively caused the

system performance to decrease on average, decreasing the capacity

yielded mixed results for each configuration. In the case of 100%

topologies, the network latency was reduced while the memory

latency remained relatively constant despite each cube servicing

twice as many requests. For 50%, the results surprisingly showed

a decrease in performance. While the network latency increased

by roughly the same amount as the 100% topologies, there was

significant increase in the memory’s core latency due to the reduction

in memory level parallelism and increased queuing latency in the

memory cubes. The largest drop was in the 0% case, as expected,

which exhibits performance degradation similar to 50% topologies.

This behavior is similar to the conclusion in Section 5.2 where there

is an inflection point where memory core latency begins to dominate

to- and from-network latency.
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Figure 15: Breakdown of network (transport) energy and
read/write (memory access) energy normalized to a 100%-C
MN.

6.3 Energy Analysis
An energy analysis of the MN paints a different picture of the optimal

MN. Since NVMs, especially PCM, typically have higher write

energy, write-heavy applications consume a large portion of the total

energy in the MN. Fig. 15 shows the breakdown of energy usage for

network/data movement energy and read/write or memory access

energy within the memory package. This breakdown is the average

energy utilization of all workloads for each type of MN.

The figure shows there is a significant tradeoff between network

energy and memory access energy. For larger networks, the amount

of energy required to move data increases linearly with the hop count.

This means that DRAM network energy is the largest fraction of

total energy in the 100% MNs. On the other end of the spectrum,

0%-C MN reduces network energy by nearly 3x, but the increase

in write energy is enough to push the total energy above that of the

baseline 100%-C MN. In between these two boundaries, there is

more balanced usage in terms of energy.

Topology-wise the tree topology general uses the least amount of

energy. Although the skip-list topology emulates a tree-like topology

and has a lower average hop count for reads, the additional energy

required to route write requests through non-optimal paths increases

the network energy by enough to consume more energy than a tree-

topology. However, these energy values are highly sensitive to the

write energy values used for NVMs. Over time if NVM write energy

is reduced, NVM-based MNs may be able to overtake DRAM in

both energy usages and performance.

7 RELATED WORK
In addition to the work outlined in Section 2.3, Kim et al. also studied

the design of MNs in the context of tying together multiple memory

cubes with processing-in-memory (PIM) capabilities [25]. As any

memory cube/PIM could potentially reference memory locations in

any other cube, a full any-to-any MN would be desirable to avoid

having to route such requests back through the host processor(s).

Beyond Micron’s seminal Hybrid Memory Cube work [33], oth-

ers have also advocated for moving future memory systems to adopt

more abstract, asynchronous, packet-based interfaces. Resnick and
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Ignatowski [36] discuss some of the motivations and possible di-

rections for such future interfaces, particularly packetized abstract

interfaces. In our work, we assume a packetized memory system

over a more abstract interface compared to that of DRAM, which

is in line with the future systems they project. Roberts et al. [37]

propose a new memory interface (NMI) that supports point-to-point

networks of NMI nodes, nodes with diverse technologies, compati-

bility for heterogeneous computing (supporting the heterogeneous

systems architecture (HSA) specifically), fine-grain logical memory

region management, etc. Our proposed architecture can make use of

such an interface, as we investigate incorporating different memory

technologies, and connect them via point-to-point links.

Cooper-Balis et al. [13] target the problem related to capac-

ity/bandwidth trade-off in traditional DDR-based memory systems

by proposing a buffer-on-board design. Although we target a similar

problem, our approach is different as we employ MNs to achieve

both high bandwidth and high capacity for the system. Zhan et

al. [42] demonstrate employing MNs to support in-memory comput-

ing and provide latency and power optimizations to their proposed

unified MN, targeting an all-to-all connected MN. In contrast, our

work does not consider a MN with full connectivity due to rea-

sons explained earlier, and therefore provide non-complementary

techniques to tackle the MN latency issues. Azarkhish et al. [8]

propose a network for the logic base dies of HMCs. They make use

of HMC’s base die for employing processing-in-memory (PIM), and

their proposed interconnect can provide additional bandwidth to the

PIM. While they consider the interconnect design within a cube,

we consider the interconnect design for the overall MN. Further-

more, there are multiple efforts that employ near-data computing

in the logic base die of memory cubes that are interconnected to-

gether [4, 19, 35]. PIM and NDC studies are therefore orthogonal to

MNs and both approaches can be complementary. On another front,

Akgun et al. [5] propose employing MNs in the silicon interposer of

2.5D integration to enhance the scalability and performance of large

capacity designs. Although we propose using silicon interposers

for the MetaCube implementation, we only integrate four memory

cubes on the interposer and simply use an interface chip to provide

direct point-to-point links to achieve low latency. If more memory

cubes are to be integrated on the silicon interposer, alternatively, one

can decide to implement MNs in lieu of a costly high-radix switch.

Rosenfeld [38] analyzes how multiple HMCs perform when they

are connected using chain or ring topologies, with various routing

algorithms. In our work, we consider other topologies such as skip

lists. We also identify performance bottlenecks for such systems,

propose arbitration techniques to improve overall MN throughput,

and incorporate non-volatile memories to achieve better balance

between interconnect and memory array latencies.

8 CONCLUSIONS
In this paper, we examined the design of MNs and analyzed sources

of performance degradation. Based our analysis, we proposed sev-

eral mechanisms and MN organizations to address the performance

issues. We target globally fair arbitration through distance-based

arbitration, which estimates the age of a request and provide several

insights behind implementation of such a scheme. We introduced a

non-coherent skip-list-based topology able to provide performance
matching or exceeding, on average, that of the lowest hop count

tree topology. To reduce MN size/diameter, we consider two ap-

proaches: the first uses the higher density of NVM and the second

leverages advanced packaging technologies to create very high-

capacity MetaCubes, both of which increase per-package capacity

and reduce MN size. These provide effective techniques to improve

the performance of future MNs to support modern servers, super-

computers, and high-end workstations with terabyte-scale memory

capacities.

While this paper focused on MNs for a particular family of system

organizations (specifically where each of the host processor’s mem-

ory ports covers a disjoint portion of the physical address space),

the insights learned and techniques proposed should extend to other

types of MNs. For example, distributed arbitration to increase fair-

ness/throughput and read-write differentiated routing could both be

promising for multi-GPU systems [26] or networks of PIMs [25],

optimizations and future non-coherent topologies, and the ability to

cluster memory network-like networks into MetaCube like devices.
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