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Abstract—This paper proposes a scalable DNN processor that
can be flexibly reconfigured to maximize inference efficiency on a
wide range of DNN models. The processor consists of 18 comput-
ing nodes with various precision modes support. To improve the
computation throughput, we propose a sub-image parallelization
strategy, where the original input image is divided into multiple
sub-images and computed on multiple nodes in parallel. In
addition, the cross-layer pipeline is implemented to improve
resource utilization. The proposed processor is implemented in
28nm CMOS technology and achieves a peak performance of
4.17 TOPS and an energy efficiency of 2.08 TOPS/W.

Index Terms—DNN, precision, processor, scalable, pipelining

I. INTRODUCTION

Image recognition is one of the essential Deep Neural Net-
work (DNN) applications [1]–[3]. DNN models become larger
and more complex to achieve higher recognition accuracy,
which demands more powerful hardware to execute. However,
depending on the applications, the performance requirement of
DNNs varies. For example, the performance of a tiny network
on energy-constrained edge devices would be very different
from a large network in data centers. Similarly, the hard-
ware (i.e., DNN accelerators) optimized for smaller networks
might not be as efficient when executing larger networks.
It is challenging to design a DNN accelerator that delivers
good computational performance, and meanwhile can adapt to
various DNN models while maintaining good efficiency. In this
paper, we seek a path toward a one-size-fits-all solution and
aim to design a dedicated image recognition DNN processor
optimized for both performance and flexibility.

A large number of DNN processors have been proposed
over the past years, most of which have been focusing on opti-
mizing single-core performance, thereby improving the overall
processor performance [4]–[6]. Some designs further push the
performance limit by introducing multiple Piles [7]. However,
single-core or Pile organizations lack flexibility and scalability.
Different DNN models or even different layers in the same
model might have diverse computation/bandwidth/accuracy
requirements [8]. While some designs propose to augment
each PE with additional hardware to support different precision
modes, not all the layers can utilize the extra hardware all
the time, therefore resulting in a waste of resources. Pipeline
mechanisms have been proposed to improve the throughput
of DNN processors [9]. Pipelining is beneficial when a large
number of consecutive images can be fed into the processor.
However, most edge devices only need to process a small
number of images at a time, and therefore cannot take full
advantage of pipeline computation.

To address the above challenges, this paper introduces
CompoundEye, a scalable DNN processor consisting of 18
computing Nodes. The Nodes can perform DNN computation
independently or combined to output greater throughput, thus
providing high performance and great flexibility for DNN
applications in different scenarios. To further improve perfor-
mance, we propose cross-layer pipeline and sub-image paral-
lelism strategies, where a centralized controller is introduced to
support data transfer between the sub-images. The accelerator
is implemented in 28nm CMOS technology and can achieve
a peak performance of 4.27 TOPS.

II. COMPOUNDEYE ARCHITECTURE

A. Overall Architecture of CompoundEye
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Fig. 1: Overall architecture of CompoundEye.

CompoundEye comprises 18 Nodes, a RISC core, a DMA
engine, and an external memory interface, as shown in Fig-
ure 1. The Nodes are connected with the RISC core, DMA,
and memory interface through the data bus. The Central Node
is the data exchange center for the other 17 Nodes. The RISC
core loads the DNN model parameters and generates control
and configuration instructions, including the segmentation of
the DNN model, the allocation of computing tasks for each
Node, and the reorganization of the intermediate data. These
instructions are sent to the Nodes via the control bus.

B. Node Architecture

The Node architecture is shown in Figure 2. Nodes are
connected through the data bus and can handle all DNN
operations independently. Each Node consists of four PE
arrays. The PEs can be reconfigured to support multi-precision
convolutional computation (see Sec III-C). Each Node contains
weight register files (Weight RegFiles) and activation register
files (AT RegFiles) to enable data reuse. The Weight RegFiles
transfer weights to the four PE arrays, then these weights are
broadcasted to all 16 PEs in each PE array. AT RegFiles are
connected to the PEs on the right edge of each PE array, so
each PE array receives the same activations. The Node has
two Data Buffers to form a Ping-Pong buffer system. The
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Fig. 2: Architecture of a single Node.
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Fig. 3: Cross-Layer Pipelining for VGG-16.

Data Buffers transfers features to AT RegFiles and weights
to Weight RegFiles. After performing activation function,
pooling, and rearranging operations, outputs of the PE arrays
become input feature maps of the next layer and are stored
in the Data Buffers. The operands in the PE array can flow
between adjacent PEs from right to left or from bottom to
top. Four PE arrays, Weight RegFiles, and AT RegFiles form
the output stationary (OS) dataflow. We chose OS dataflow
to retain the operands inside the PE at the maximum, which
is conducive to reusing weights and activations in temporal
and spatial manners. OS dataflow reduces the bandwidth
and power consumption caused by data transmission. The
Array Controller loads the instructions from the Inst Buffer to
configure the Node. The Control Unit manages the status of
the Node and communicates with the data and control buses.

III. COMPUTATION STRATEGY AND DATAFLOW

A. Cross-Layer Pipelining of Sub-images

Cross-layer pipelining allows different layers of a DNN
model to be executed on a processor, which effectively im-
proves performance and resource utilization [10]. Historically,
cross-layer pipelining techniques can hardly reach their full
potential due to limited on-chip storage. In this paper, we
combine cross-layer pipelining with image segmentation tech-
niques to address the storage challenges.

1) Pipelining Strategy: In our design, the input image is
divided into Nsub sub-images to form a sub-image pipeline.
As shown in Figure 3, these sub-images form a cross-layer
pipeline across all Nodes. Since each Node only processes
one sub-image at a time, so long as the input image is
partitioned appropriately, the on-chip SRAM in each Node
can easily store all the operands, eliminating the expensive off-
chip communication. The value of Nsub can affect the pipeline
performance. If Nsub is too small, each sub-image can be too
large to fit in the on-chip storage, so off-chip data transfer
becomes unavoidable. If Nsub is too large, each sub-image can
be too small to fully utilize the Node’s computation resource,
which impacts the pipelining performance. In our design, Nsub
will be determined by the RISC core for each layer according
to 1) the parameters of the DNN model and 2) the on-chip

storage capacity inside a Node. Note that in CompoundEye,
one buffer (e.g., Data Buffer A) stores the input activation
and the current layer’s weights, and the other buffer (e.g.,
Data Buffer B) stores the output activation and the next layer’s
weights. So in principle, the size of a sub-image must be less
than half of a Node’s storage capacity, i.e., Nsub ≥ 2× S f eature

SNode
(S f eature is the size of the input feature map, SNode is the
storage in each Node).

2) Pipelining Implementation: To determine the number
of DNN layers K that participate in cross-layer pipelining
at a given time, we need to consider both performance and
storage requirements. If K is too small, we may not take
full advantage of pipelining and harm performance. If K is
too large, the intermediate data generated may not fit in the
on-chip storage, so off-chip memory accesses are needed. In
this paper, Node is the basic allocation unit for cross-layer
pipelining, so the number of Nodes also limits the value of K,
i.e., K ×M ×Nsub ≤ NNode, where M is the average number
of Nodes allocated to each layer in the pipeline. In addition,
the selection of K should consider the load balancing of each
layer during cross-layer pipelining. Specifically, the ratio of
computation demand of each layer Pcomp =C1 : C2 · · · : CK and
the number of Nodes allocated to each layer PNode = M1 :
M2 · · · : MK needs to satisfy Pcomp ≈ PNode. The selection of N
and K will be determined through experiment (Section IV-B),
and the key metrics are performance and off-chip accesses.

Take VGG-16 as an example (Figure 3), in the first four
layers, the size of the input feature map is large (the stor-
age requirement can reach 1.6MB). Considering the on-chip
storage limitation, we divide the input into six sub-images
(Nsub = 6). Therefore, each sub-image can be assigned to 3
Nodes (18/6 = 3). Then, we need to determine the value of
K (the number of DNN layers that participate in cross-layer
pipelining at a given time). Possible K values are 1, 2, and
3. We find that layer 2 does more computation than layer 1).
To balance the load of each layer in the pipeline, we divide
the three Nodes into two groups: one Node processes the
first layer, and the other two Nodes handle the second layer,
that is, K=2. Meanwhile, the weight parameters of these two
layers can all be stored in the Nodes without accessing the
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Fig. 4: Edge data exchange between sub-images.

off-chip memory. For layers 3 and 4, it is also found that
the size of features and weights are similar to that of the
first two layers, and so are the computation loads. Therefore,
we apply the same strategy to layers 3 and 4. As the size
of the feature map decreases and the weight increases, when
the weight size is close to or exceeds SNode

2 , the sub-image
should be re-divided. We analyze the computation loads for
layers 5-7, whose Pcomp ≈ 1 : 2 : 3. To balance the load we
set PNode = 1 : 2 : 3, that is, K = 3. And CompoundEye is
accordingly re-partitioned into three clusters, each with six
Nodes. When the size of the input feature is less than SNode

2 ,
no sub-image needs to be divided since the feature map can
be stored in a single Node (i.e., Nsub = 1). For example, for
layers 8 and later, the feature map sizes are less than 0.2MB,
but the weight increases to more than 0.6MB. The feature size
is already very small, and the weight of a single layer can no
longer be stored in the Node. Therefore, instead of dividing
sub-images, we keep all the features in each Node. So, we set
K = 3 for layers 8-10. For layers 11-16, we set K = 6, we can
flexibly allocate the 18 Nodes to the six layers. In this process,
the Nodes of each layer process the convolutional kernel in
parallel. Ideally, these Nodes can be combined to store all the
weights of the layer, effectively reducing the access to off-chip
memory when the weight size increases.

B. Dataflow of the Sub-images

For convolution computation, the sliding of the convolution
kernel windows on the feature maps is continuous. However,
the segmentation of the sub-images breaks the integrity of
the original image. Therefore, we must transfer the data on
the edges of sub-images between Nodes to ensure the correct
computation. As shown in Figure 4, the image is padded
and divided into four sub-images coded with different colors.
Each sub-image is dispatched to a Node for computation.
To ensure correctness, the two right-most columns of the
light blue sub-image need to be transferred and concatenated
with the dark blue sub-image. Likewise, the bottom-most
two rows of the light blue image must be transferred and
concatenated with the gray sub-image, and so on. The data
dependency of the sub-images is regular. We have studied
two methods for edge data transfer. In the first method, each
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Fig. 5: PE architecture.

sub-image exchanges edge data with all adjacent sub-images.
This method ensures that the size of every sub-image in each
layer stays constant, but its communication is too costly to
be suitable for cross-layer pipelining. In the second method,
the sub-images only transfer the edge data with the adjacent
sub-images on the left and above in one direction w.r.t. the
original input images or input feature map. Compared with
the first method, the communication cost is reduced by nearly
1
4 . Therefore, CompoundEye adopts the second method.

C. Multi-Precision Support

The PE architecture is shown in Figure 5. Each PE contains
four 4 × 4bit multipliers, one addition tree, and a one-bit
shifter that allows the PE to be reconfigured to 4× 8bit or
8× 8bit precision. To enable data reuse and reduce off-chip
accesses, additional memory modules such as FIFO, F Reg,
and Psum Reg Stack are implemented in the PE for supporting
OS dataflow and caching activations. Specifically, F Reg is
used to receive data from the adjacent PE on the right. The
data in F Reg will be transferred to the adjacent PEs or sent
to the computing unit inside the PE according to the control
signals, so that the operands can flow flexibly in the PE Array.
FIFO is used to store the feature data transferred from the
adjacent PE below, so that the feature data of the lower half
of the convolution window does not need to be loaded from the
SRAMs. The feature data in the FIFO will also be transmitted
to the adjacent PE above or to the computing unit inside the
PE the next time. The MUX selects whether to load the data
from FIFO or F Reg according to the control signal.

Each Node can perform three precision modes: 4 × 4bit
N-l (low-precision) mode, 4 × 8bit N-m (medium-precision)
mode, and 8 × 8bit N-h (high-precision) mode. As shown
in Figure 5, the black, cyan, and purple lines represent the
dataflow of N-l, N-m, and N-h mode, respectively. In N-
l mode, each PE can simultaneously process four pairs of
activations and weights with the same relative position on
different channels of a convolution window. The number of
PEs corresponding to the three precision modes is determined
according to the proportion of three precisions required in a
particular DNN layer. Assuming that the number of multiply-
accumulate (MAC) with 4× 4, 4× 8, and 8× 8bit precision
accounts for a1%, a2%, and a3%, respectively. Pa represents
the proportion of different computation precision tasks for the



TABLE I: Configurations for VGG-16

Layer Nsub K PNode
PE

Utilization
1-4 6 2 1 : 2 0.91
5-7 3 3 1 : 2 : 3 0.94
8-10 1 3 3 : 7 : 8 0.94
11-16 1 6 3 : 3 : 4 : 4 : 2 : 2 0.96

TABLE II: Pb and performance for VGG-16

Pb 2:5:5 3:5:4 5:3:4 7:2:3 9:1:2
TOPS 4.05 4.17 3.88 2.96 1.46

TABLE III: Performance and energy efficiency comparison

Designs DaDianNao [7] STICKER [5] JSSC’20 [6] CompoundEye
Technology 28nm 65nm 65nm 28nm
Area (mm2) ≥1.88a @1Node 12 10.24 3.9 @1Node
Storage ≥2.25MB @1Node 170KB 364KB 552KB @1Node
Max Freq. 606MHz 200MHz 160MHz 530MHz
Precision 16/32 FP 8 FP 8 FP 4/8 FP
Power ≥384 @1Node 248 120.5 106.4 @1Node
(mW) ≥6150 @16Node 2014 @18Node
Performance 0.348 @1Node 0.102 0.134 chips 0.24 @1Node
(TOPS) 5.58 @16Node 4.17 @18Node
TOPS/W 0.91 0.48 1.03 2.08
aArea of on-chip memory not included

DNN model and Pa = a1 : a2 : a3. In a Node, if the number
of PEs in N-l, N-m, and N-h modes account for b1%, b2%,
and b3%, respectively, then the proportion of three precision
PEs of the Nodes is Pb = b1 : b2 : b3. We need to configure the
Nodes in a way that Pa and Pb are as close as possible (i.e.,
Pa ≈ Pb) to achieve the best resource utilization.

IV. EVALUATION

A. Implementation

We implement CompoundEye in Verilog RTL. To obtain the
processor’s area and power numbers, we synthesize, placed
and routed the design with Synopsys Development Kits [11]
under 28nm CMOS technology [12]. We use CACTI [13] and
Memory Compiler [12] to model the DRAM memory and on-
chip SRAM buffers, respectively. Each Node contains 552KB
of on-chip SRAM. The supply voltage can be dynamically
changed between 0.6-1.0V, where the frequency varies be-
tween 50-530MHz. In total, a Node consumes 3.95mm2 area
(1.82mm×2.17mm) and 106.4mW of power.

B. Optimizations

The following key factors prevent CompoundEye from
achieving its optimal performance. Firstly, spatial-temporal
idle bubbles are generated and cause pipeline stalls. For exam-
ple, the current sub-image cannot immediately progress to the
next Node when waiting for the edge data of other sub-images.
Additionally, the number of Nodes with the corresponding
precision might not perfectly match the sub-images, which
causes some Nodes to stay busy while others idle. Secondly,
when CompoundEye changes mode, it needs to first collect the
feature maps of each Node, reorganize them, then broadcast
them to the PEs, during which the Nodes must be suspended.
Lastly, for some DNN models, the feature maps in certain
layers are too small to fully utilize the PE Array, resulting in
performance loss. As a result, to improve the performance and
energy efficiency of CompoundEye, we optimize the number
of sub-image Nsub, the number of cross-layer pipeline K, the
Nodes proportion for the K layers pipeline PNode, and the pro-
portion of three precision Pb. The parameters and performance
numbers for VGG-16 are shown in Table I and Table II. The
tables show that longer cross-layer pipelining leads to better
PE utilization. The performance becomes optimal when the
precision ratio provided by CompoundEye matches the preci-
sion requirements of the DNN model. In cases of unmatched
precision, CompoundEye needs to supplement high-precision

PEs for low-precision operations, thus significant performance
degradation is observed in Table II.

Sub-image parallelization is more efficient for larger input
features because it dramatically reduces off-chip memory
accesses. While this work focuses on 3×3 filters (most DNN
models use 3×3 filters), other filter sizes (e.g., 5×5, 7×7)
can be easily supported at the expense of lower PE utilization
or be executed in the RISC core.

C. Comparisons
CompoundEye allows the 18 Nodes to be flexibly config-

ured, where the number of active Nodes called Nac can be set
to any number from 1 to 18. In our experiment, we can obtain
a minimum computing performance of 2.23 (Nac = 1 Node) to
a maximum of 4.17 TOPS (Nac = 18 Nodes). CompoundEye’s
design is flexible and scalable. On the one hand, one can
increase the number of Nodes to improve the performance
further. On the other hand, by reducing the number of Nodes,
CompoundEye enjoys very low power consumption. Table III
shows the comparison results against state-of-the-art designs.
Compared with the well-known multi-node DNN processor
DaDianNao [7], CompoundEye achieves 2.28× better energy
efficiency with smaller on-chip storage. Compared with other
designs, CompoundEye achieves over 20× higher performance
and can be reconfigured to support various DNN applications.

V. CONCLUSION

In this paper, we introduced CompoundEye, a scalable DNN
processor for image recognition applications. The processor
can be reconfigured to adapt to various computation precision
requirements for different DNN models and achieves great
energy efficiency. To further unleash CompoundEye’s poten-
tial, we have proposed an image partition strategy and opti-
mized the cross-layer pipelining mechanism based on DNN
applications’ requirements. Evaluation results showed that
CompoundEye outperforms state-of-the-art DNN accelerators
in terms of TOPS-per-watt.
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