
NoC Frequency Scaling with Flexible-Pipeline Routers
Pingqiang Zhou∗, Jieming Yin†, Antonia Zhai † and Sachin S. Sapatnekar∗

∗ Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Email: {pingqiang, sachin}@umn.edu

† Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
Email: {jyin, zhai}@cs.umn.edu

Abstract—Voltage and frequency scaling (VFS) for NoC can potentially
reduce energy consumption, but the associated increase in latency and
degradation in throughput limits its deployment. We propose flexible-
pipeline routers that reconfigure pipeline stages upon VFS, so that
latency through such routers remains constant. With minimal hardware
overhead, the deployment of such routers allows us to reduce network
frequency and save network energy, without significant performance
degradation. Furthermore, we demonstrate the use of simple performance
metrics to determine the optimal operation frequency, considering the
energy/performance impact on all aspects of the system - the cores, the
caches and the interconnection network.

Index Terms—Chip Multiprocessors, Interconnects, NoC, Pipelined
Router, Voltage Scaling, Frequency Scaling.

I. INTRODUCTION

Advances in semiconductor technology have led to continuous
increases in device density and larger system sizes. Concomitant with
exponentially reducing device dimensions, designers face new chal-
lenges in maximizing computation while remaining with a stringent
power envelope. Over the last decade, chip multiprocessors (CMPs)
have emerged as a potential solution to address some of these problems
by integrating multiple smaller and more energy efficient cores in order
to replace a single, larger core. These cores must communicate through
an efficient on-chip interconnection network (NoC), and NoC design
is vital to both performance and power.

If incorrectly designed and/or poorly utilized, NoCs can become
a major performance bottleneck and a significant source of power
consumption for CMP systems [1]–[3]. As CMP-based systems be-
come the main powerhouse for computation, they must serve diverse
computing needs; and thus the on-die NoCs must be designed for a
variety of traffic patterns. The integration of heterogeneous cores [3],
[4] onto a single die further aggravates this situation, since cores with
different computation capability have different performance goals. By
identifying the performance requirements of each core, it might be
possible to reduce the energy consumption of the NoC, while achieving
the same overall performance.

State-of-the-art NoC designs often use packet-switched routers to
support high bandwidth traffic. Under this model, it often takes multi-
ple hops for messages to reach their destinations, and the energy/delay
associated with packets traversing through routers is the dominating
factor. There have been several proposals for reducing the performance
penalty, such as router bypassing [5]–[7] and enhancing router pipeline
design [8]–[10]. There also exists a large body of work on reducing
router energy consumption, which corresponds to a large portion of
NoC energy [1], [2].

A critical design parameter that directly affects both performance
and power of NoC is the network frequency. Techniques such as
VFS [11]–[14] have been widely investigated to allow the network
to operate at a lower frequency to reduce energy consumption, when
possible. Of which [11]–[13] specifically focus on link latency or
power. Mishra et al. [14] use VFS on the NoC routers to reduce
the network power consumption. However, reducing NoC frequency
increases latency and reduces network throughput, which in turn,
degrades overall system performance. An unfortunate side-effect of
performance degradation is that the processors must be kept active
for a longer duration, causing them to consume more leakage power:
this factor has become increasingly dominant in nanometer-scale

technologies. As a result, in prior work, frequency is only moderately
scaled, by up to 20%, with the network and the cores operating
asynchronously at different frequencies. To fully realize the potential
of VFS, it is desirable to be able to scale down the network frequency
significantly (our work examines changes of 2×-4×) up to the point
where the performance penalty remains small. Moreover, since our
frequency scaling uses integer multiples of the clock frequency, we
can continue to operate within a fully synchronous paradigm.

Our performance analysis indicates that different applications and
cores are sensitive to different NoC performance metrics. For some
applications, a reduction in NoC throughput has relatively little impact
on performance, but increasing NoC latency can cause significant
performance degradation. For these types of workloads, we propose
to reconfigure the router pipeline when scaling down the network
frequency. With this technique, the impact on the average time to
traverse the NoC for a single message is minimal, while the peak
throughput of the NoC degrades. Thus, for workloads that have a low
or moderate throughput requirements, but are sensitive to the NoC
latencies, this technique allows us to reduce NoC energy consumption,
without significant performance degradation. We refer to the proposed
routers as flexible-pipeline routers, since the router pipeline stages are
adaptively configured based on the workload.

To demonstrate the effectiveness of the proposed technique, we build
a flexible-pipeline router based on a classic 4-stage baseline pipeline.
In general, when NoC utilization is low, NoC frequency is scaled
down. Meanwhile, the router pipeline is reconfigured by combining
some pipeline stages, while using the same latch boundaries. We
use time-borrowing techniques to ensure that this delay-unbalanced
reconfigured pipeline runs at the optimal clock period. We evaluate the
proposed router in a chip multiprocessor connected by a mesh NoC.
In this work, we evaluate the performance of static flexible-pipelines,
where the pipeline structure is unchanged during operation. Dynamic
flexible-pipelines, which dynamically change the pipeline structure
over runtime, may be used instead to achieve further benefits but are
beyond the scope of our work at this time. Our results demonstrate
that for a large class of applications that are only sensitive to network
latency, NoC frequency can be dramatically scaled down without
significant performance degradation. This leads to improvement in
NoC energy efficiency.

Any solution that uses pipelined routers for energy savings must
satisfy two requirements: (1) The hardware overhead must be low:
The overhead for our flexible-pipeline router is minimal, and it only
requires a set of multiplexers to bypass registers and alter clock skews.
Our analysis in Section II-B3 shows that the cost of the additional
hardware is less than 3% compared to the classic 4-stage baseline
router. (2) The savings must be demonstrable at the system level:
We evaluate the impact of flexible pipeline routers in the context of
an entire multicore system, including the cores, the caches and the
interconnection network, and present the system-wide performance and
energy-delay2 (ED2) product. We find that static energy consumption
corresponds to a significant portion of energy consumption. When
lowering router frequency, system performance can degrade, and the
weight of static energy increases in total energy consumption, leading
to the conclusion that VFS is unable to consistently improve system
ED2.

978-1-61284-660-6/11/$26.00 © 2011 IEEE 403

Related work by Hirata et al. [15] presented the idea of variable-
pipeline (VP) routers, which aims to achieve similar functionality.
However, when the VP router is evaluated using the above two
criteria: (1) its hardware overhead is substantial (13%), and (2) it only
simulated VP routers with network components under a simplified
zero-load latency model and did not provide system-level conclusions.

In the context of improving NoC energy efficiency, this paper makes
the following contributions:

• We propose a flexible-pipeline router, where the number of
pipeline stages can be dynamically reconfigured. We reduce the
number of pipeline stages when scaling down the NoC frequency.
The proposed router enables us to scale down the network
frequency without increasing router latency.

• We deploy the flexible-pipeline routers in a homogeneous CMP
system connected by a mesh network, and use realistic workload
to evaluate their performance impact when the network frequency
is scaled down to reduce network energy consumption.

• We find that VFS may improve or degrade system ED2. There-
fore, we propose to use simple performance metrics to determine
whether VFS should be applied.

The rest of the paper is organized as follows: In Section II,
we discuss our pipeline reconfiguration approach for the flexible
pipeline. The experimental platform and workload used in this study
are described in Section III. We present our experimental results in
Section IV followed by concluding remarks in Section V.

II. FLEXIBLE ROUTER PIPELINE DESIGN

We use a classic four-stage-pipelined virtual-channel router as an
example to show how our strategy works. However, our approach
can definitely work on other enhanced router designs so long as they
have multiple pipeline stages. In this section, we first provide an
architectural overview of the classic router. We then introduce our
procedure for optimizing the pipeline design to maximize the benefit
obtained while speed-tuning the NoC.

A. Baseline Router Architecture
Figure 1 illustrates the microarchitecture of a classic fixed four-

stage-pipelined virtual-channel (VC) router with p input/output ports,
as used in Garnet [16]. The major components that constitute a router
are the input buffers, the route computation logic, the VC allocator,
the switch allocator, and the crossbar switch.

Fig. 1. Classic four-stage virtual-channel router

Figure 2 shows the corresponding fixed four-stage router pipeline.
Since on-chip designs must adhere to tight budgets and low router
footprints, flit-level buffering and credit-based VC flow control are

Fig. 2. Router pipeline

applied for every router. The router supports multiple message classes
(MCs), and VCs from all MCs are multiplexed across the input port.
Every VC has its own private flit buffer and its size can be specified
at runtime. The routing is table-based and deterministic.

When a head flit arrives at an input port, it is first decoded and
buffered in the buffer write (BW) pipeline stage, according to its
input VC ID. In the same cycle, a request is sent to the route
computation unit (RC) simultaneously, and the output port for this
packet is calculated based on the destination information presented in
each head flit. The header then arbitrates for a free VC of its output
port in the VC allocation (VA) stage. Upon successful allocation of
an output VC, it proceeds to the switch allocation (SA) stage where it
arbitrates for the switch input and output ports. On winning the switch,
the flit moves to the switch traversal (ST) stage, where it traverses the
crossbar and is placed on the output link connected to the next node.
The body and tail flits follow a similar pipeline except that they do
not go through RC and VA stages, instead inheriting the VC allocated
by the head flit. The tail flit deallocates the VC reserved by the packet
when it leaves the router.

B. Flexible-pipeline Router

Although the fine-granularity router pipeline design introduced in
Section II-A can run at high frequency, and therefore support high
throughput, it may degrade the system performance significantly when
the network is slowed down to save power consumption. This is
because such a change causes the network latency to increase, which
has undesirable effects as discussed in Section I. Therefore, we propose
a flexible-pipeline reconfiguration approach to adapt to a change in the
network speed, based on accurate delay models for the components in
the baseline router introduced in Section II-A.

1) Delay Models of Router Components: We model the delay
of each router component shown in Figure 1 by the technology-
independent parametric equations presented in [8].

For each component i, we have two delay estimates: latency (ti) and
overhead (hi). Defined precisely, the latency is the time from when
inputs are presented to the component to when the outputs needed by
the next component are stable. The overhead refers to the setup delay
expended by additional circuitry required before the next set of inputs
can be presented to the component. As we introduce our timing model,
let

• τ be the delay of an inverter with identical input capacitance (at
65nm technology, SPICE simulations show that the value of τ is
7.8ps@1.2V),

• p be the number of input/output ports,
• c be the number of message classes,
• v be the number of VCs per message class, and
• w be the flit size in bits.

The technology-independent parametric delay equations for each
router component are listed in Table I [8].

2) Flexible Router Pipeline Reconfiguration: Based on the delay
models shown in Table I, we can further determine the optimal number
of pipeline stages, for various router sizes and various operating
frequencies and supply voltages for the NoC.

We first introduce how the stage delay, T , is calculated for a pipeline
stage that includes a few sequential components. Let a and b be the
first and last components in the pipeline stage. Given the ti and hi of

404

TABLE I
PARAMETERIZED DELAY EQUATIONS (IN τ) FOR BASELINE ROUTER

Component Parametric delay equation
BW + RC(BR) tBR = 100, hBR = 0

VA tV A = 16 1
2
log4 pv + 16 1

2
log4 v + 20 5

6
, hV A = 9

SA tSA = 11 1
2
log4 p+ 23 log4 cv + 20 5

6
, hSA = 9

ST tST = 9 log8(w⌊ p
2
⌋) + 6⌈log2 p⌉+ 6, hST = 0

each component i on the critical path, we have

T =

b∑
i=a

ti + hb (1)

For example, if we combine the stages SA and ST in the baseline
router into a single stage, then the delay for combined stage would be
T = tSA + tST + hST = 11 1

2
log4 p+ 23 log4 cv + 9 log8(w⌊ p

2
⌋) +

6⌈log2 p⌉+ 26 5
6

in units of τ .

TABLE II
DELAY VALUES (IN UNITS OF τ) OF EACH ROUTER COMPONENT

Router BW+RC(BR) VA SA ST
tBR hBR tV A hV A tSA hSA tST hXB

5-port 100 0 56.5 9 68.7 9 45.0 0
6-port 100 0 58.7 9 70.2 9 46.8 0

Table II lists the ti and hi numbers of each component for the
cases of a 5-port router and a 6-port router. From this data we can
clearly see that the pipeline stages are imbalanced, and conventional
clocking would set the period to correspond to the pipeline stage
with the longest delay. Instead, in our work, we apply the time-
borrowing techniques to boost the pipeline frequency using clock skew
optimization [17], where slower stages in the pipeline borrow time
from faster stages, such that the linear router pipeline can operate at
the average cycle time of all the pipeline stages. Let Ti be the delay
for pipeline stage i and let n be the total number of stages. Then the
clock time for the n-stage router after time-borrowing is

Tclk =

∑n
i=1 Ti

n
(2)

Furthermore, this four-stage linear router can be reconfigured as
either a three-stage, or a two-stage, or even a one-stage pipeline. For
example, a three-stage pipeline can be obtained by combined any of
the two successive components such as 1) BR and VA, or 2) VA and
SA, or 3) SA and ST. Of these, we choose the one with the minimum
optimized clock period T that maximizes the router frequency that the
pipeline can support: note that since the hi values for various stages
are different, the optimal frequency varies with our choice. The best
choices are found to be: 1) for the three-stage pipeline, we combine
SA and ST into one single stage and 2) for the two-stage pipeline, we
combine VA, SA and ST into one single stage.

Figure 3 shows our final pipeline reconfiguration results for a 5-port
router, and Table III summarize the results for two different router sizes
after applying time-borrowing techniques. For each pipeline design
case, we list the optimal clock time Tclk in units of τ , and the
maximum frequency F that the pipeline can support in the GHz range.
To achieve energy saving, we also apply voltage scaling as we scale
down the frequency and the following Vdd values are used: 1.2V for
four-stage pipeline, 1.1V for three-stage pipeline, 1.0V for two-stage
pipeline and 0.8V for one-stage pipeline. Considering that the circuit
delay is a function of the supply voltage Vdd, we scale τ accordingly
based on Alpha-power law [18] for the above voltage settings.

Given the maximum frequency numbers for each pipeline design,
it is straightforward to select the optimal pipeline design at a given
network speed. The basic principle behind this idea is that at the
same network speed, a shorter pipeline with fewer stages leads to

(a) Four-stage pipeline, Tclk = 72.1τ

(b) Three-stage pipeline, Tclk = 93.1τ

(c) Two-stage pipeline, Tclk = 135.1τ

(d) One-stage pipeline, Tclk = 270.2τ

Fig. 3. Optimal pipeline reconfiguration for a 5-port router, time borrowing
technique is applied to boost the pipeline frequency.

TABLE III
OPTIMAL CLOCK PERIODS/FREQUENCIES FOR VARIOUS PIPELINE

CONFIGURATIONS

Router 4-stage 3-stage 2-stage 1-stage
Tclk Max. F Tclk Max. F Tclk Max. F Tclk Max. F

5-port 72.05 1.78 93.07 1.32 135.10 0.87 270.2 0.39
6-port 73.43 1.75 94.90 1.30 137.85 0.85 275.7 0.38

lower router latency, and therefore, better network performance. For
example, for the 5-port router, if its frequency is set to be 1.5GHz,
then only the four-stage pipeline with a peak frequency of 1.78GHz
can be fast enough. However, if we reduce the router frequency to
1.0GHz, then both four-stage pipeline and three-stage pipeline can
meet the frequency demand, but we will choose three-stage pipeline
to maximize the router performance. Table IV presents the results of
optimal pipeline stage number N = 1, 2, 3, 4 for different routers with
different router to processor clock ratio S (explained in Section III-A).

TABLE IV
THE OPTIMAL NUMBER, N , OF PIPELINE STAGES WITH DIFFERENT

PROCESSOR TO ROUTER CLOCK RATIO S; THE PROCESSOR FREQUENCY IS
1.5 GHZ.

Router S = 1 S = 2 S = 3 S = 4 S = 5
5-port 4 2 2 1 1
6-port 4 2 2 1 1

3) Architecture Support for Flexible Pipeline Reconfiguration: The
hardware support required for out flexible-pipeline router is minimal,
and only needs a set of multiplexers that bypass registers and alter
clock skews. In Figure 4 we only show the multiplexers used to
bypass the registers after each pipeline stage. Given a particular
pipeline configuration, we set the stage selection signals to combine the
successive stages correspondingly. The delay of the 2:1 multiplexers
used in the flexible-pipeline router is just several τs, therefore their
impact on the pipeline clock period is negligible for all the pipeline
configurations. For the area cost, after analyzing the gate count of each
component in the flexible-pipeline router, we find that the router area is
dominated by the input buffers and VC allocators, and the multiplexers
only account for less than 2% hardware overhead in terms of the router
area.

405

Fig. 4. Router architecture for flexible pipeline reconfiguration

III. EXPERIMENTAL PLATFORM

A. CMP System Simulator

We use Multifacet’s General Execution-driven Multiprocessor Sim-
ulator (GEMS) [19] as our simulation engine. GEMS is a Simics-based
[20] full system simulator using timing-first simulation approach. This
infrastrcture provides detailed performance and power models for the
processor pipeline, the memory hierchy, as well as the NoC. The NoC
simulator provides the flexibility for customizing the interconnection
by providing support for various network topologies, including user-
specified ones. The NoC power model is provided by Orion 2.0 [21],
which reports the total switch and link power. The NoC power breaks
down into three segments: dynamic, static (leakage) and clock power.

In this work, we simulate an 8-core CMP system with 65nm tech-
nology nodes, where the cores/L2 cache banks and memory controllers
are connected using a mesh network. Architecture parameters can be
found in Table V. The interconnection network uses a deterministic
shortest path routing algorithm. For the processor power, we employ
Wattch [22], an architectural level power modeling tool. We have
updated the technology-specific parameters in Wattch based on the
ORION 2.0 technology file. Simulation results show that the power of
floating function units (FUs) dominates the total FU power. Therefore,
we use power gating and clock gating techniques to disable the inactive
floating FUs in the CMP system.

TABLE V
BASELINE SIMULATION CONFIGURATION

Processor Core 1.5GHz, one-way in-order
3 integer FUs, 6 floating FUs

Private L1 Cache Split private I/D caches, each 2KB,
2-way set associative, 64B block size,

1-cycle access latency
Shared L2 Cache 4M banked, shared distributed, 512KB (per core)

4-way set associative, 64B block size,
8-cycle access latency

Memory 4GB DRAM, 200 cycle access latency,
four memory controllers (one

in each corner node)
Router 5 Input/output ports, 4-stage Pipeline,

5 message classes, 2 VCs per class,
64-bit flits, 4-flit buffer depth,

1 flit per control packet, 9 flits per data packet,
wormhole routing

In our baseline, the processors and NoC operate at the same fre-
quency. Upon frequency scaling, we introduce a slow down parameter
S, which is the router-to-processor clock ratio. For example, S = 2
implies that one network clock cycle is equivalent to two processor
cycles. In our experiment, we experiment with three integer values, S
= 1, 2, and 4. We found that, the link delays are small enough that
for any of the S values used here, a flit can traverse a link within one
network cycle.

B. Workloads

We choose applications from the SPEC OMP2001 [23], NU-Mine
[24] and PARSEC [25] benchmark suites as our workload input. In
total we evaluate 6 correctly-compiled benchmarks written in C/C++.
An overview of these applications are shown in Table VI.

TABLE VI
BENCHMARK DESCRIPTIONS

ammp Computational Chemistry
art Neural network simulation;

adaptive resonance theory
blackscholes Computational finance

equake Finite element simulation;
earthquake modeling

fkmeans Fuzzy-logic based data partitioning
kmeans Mean based data partitioning

In accordance with common practice in the architecture community
when working with such benchmarks, in order to reduce simulation
time, for each benchmark we first fast-forward to the beginning of
the region of interest (the parallel section representative of the whole
application) in Simics without loading Ruby; after that, we load Ruby
and simulate one billion instructions.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate a CMP, as described in Section III-A,
with the proposed flexible-pipeline routers, and compare its perfor-
mance and energy consumption with a system that uses fixed-pipeline
routers. Figure 5 shows the performance and energy results, with
routers scaled with different slow down factors (S = 2, 4). For the
reasons specified in Section I, we limit the choice of S to integer
values. The results are normalized to the case where the NoC is
unscaled i.e., S = 1.

In general, reducing the network frequency can reduce energy
consumption (Figure 5(a)), but it can also increase network latency
and degrade network throughput. Such impacts directly translate into
system performance degradation, as shown in Figure 5(b). The first set
of bars in Figure 5(b) corresponds to the unscaled NoC (bars Base), the
next two sets of bars correspond to CMP systems with fixed-pipeline
routers (bars Con2) and flexible-pipeline routers (bars Flex2) when the
network frequency is scaled by 50% and voltage is scaled from 1.2V
to 1.0V.

For fixed-pipeline routers (bars Con2), on average, energy con-
sumption is reduced by 41%, but system performance is degraded by
7%. The reduction in energy consumption is mainly due to reduction
in clock energy and dynamic energy. In particularly, clock energy
reduction due to frequency scaling is significant. This is because clock
energy is proportional to the product of V 2

dd and number of clock
transitions. For example, when the network voltage is reduced from
1.2V to 1.0V and the network frequency is slowed down by a factor
of 2, it corresponds to a 65% reduction of clock energy. Dynamic
energy is proportional to V 2

dd and the amount of work performed by
the NoC. Since the data path that each packet traverses is the same
and the number of packets is similar before and after scaling; the
amount of work performed by the NoC is not significantly changed
due to scaling. As a result, dynamic energy of the network decreases
quadratically as network voltage goes down. Static energy of the
network reduces linearly with network voltage but increases linearly
with total execution time. In our experiment, changes in network static
energy are small compared to clock and dynamic energy.

When the flexible-pipeline router is deployed, with the same volt-
age/frequency scaling, the average system performance degradation is
only 1.6%, and the average network energy consumption is reduced by
43% (bars Flex2). This corresponds to a 2% additional reduction from
the fixed pipeline case. This small reduction in energy is a side effect
of performance improvement: by completing the application faster, we

406

(a) Network energy. Dynamic corresponds to the total dynamic energy consumed by both routers and network
links; segment Clock corresponds to dynamic energy for distributing the clock; Static corresponds to the total
static (leakage) energy consumed.

(b) System performance

(c) ED2 of the system

Fig. 5. Comparison of fixed-pipeline and flexible-pipeline routers. Base corresponds to no scaling and using fixed-pipeline routers. Con2 corresponds to network
frequency scaled down by a factor of two, and using fixed-pipeline routers. Flex2 and Flex4 corresponds to network using flexible-pipeline router and frequency
scaled down by a factor of two and four, respectively. All results are normalized to Base.

are able to reduce static energy. Overall, NoCs with flexible-pipeline
routers are more energy efficient.

TABLE VII
CACHE MISS RATES FOR EVALUATED WORKLOADS

Workload L1 data cache L2 cache
(misses/K instructions) (misses/K instructions)

ammp 13.7 4.4
art 40.8 18.1

blackscholes 8.1 0.9
equake 2.8 2.6

fkmeans 1.9 1.7
kmeans 2.4 1.9

The performance impact of network voltage and frequency scaling
varies with the workload. Table VII lists the cache miss rates for all
the workloads. Some applications, such as ammp and art suffer from
a large number of L1 cache misses, and thus are very sensitive to
L2 cache response time through the network. For these applications,
network frequency scaling can degrade performance in two ways. On
the one hand, frequency scaling leads to increases in network latency
and L2 cache response times, which in turn increases the number of
cycles per instruction (CPI). On the other hand, network frequency
scaling decreases the throughput capability of the network, and thus
causes more contentions. Although flexible-pipeline routers are able to
effectively avoid increasing network latency in the absence of network
contention, they see some level of throughput degradation due to
contention. Thus, applications with high throughput requirements are

likely to suffer performance degradation with frequency scaling. For
other applications, when frequency is scaled down, deploying flexible-
pipeline routers allows us to reduce energy consumption without suf-
fering appreciable performance degradation. Dynamically determining
the optimal operation frequency of the NoC is desirable [14], but is a
topic for future work.

If the network contention is low, flexible-pipeline routers make
it possible to scale down network frequency without increasing the
latency. However, this technique cannot prevent degradation in the
network throughput, and thus frequency scaling can still lead to
performance degradation. Bars 1, 3 and 4 of Figures 5(a) and 5(b)
show the performance and network energy consumption as a result of
voltage and frequency scaling when the network is scaled by factors
of two and four, respectively, again using the no scaling case as a
reference. It is clear that scaling reduces both the performance and the
energy. When network is scaled by a factor of four, all workloads suffer
noticeable performance degradation. However, the energy savings in
going from a scaling factor of two to four shows diminishing returns
as compared to the case where we go from scaling factor one to two.
This is primarily related to the fact that applications take longer to
complete, and the NoC hardware is activated for a longer duration,
during which static (leakage) energy is expended. This increase in
static energy offsets the gains made in reducing the dynamic network
energy.

Up to this point, we have only considered the energy consumption of
the network. However, whether VFS is beneficial must be considered
in the context of the entire system, including the cores, the caches and

407

the interconnection network. Figure 5(c) shows the ED2 of the entire
system. In comparison to flexible-pipeline routers, system with fixed-
pipeline routers has higher ED2 due to significant system performance
degradation. We also find that for applications with a high cache miss
rate, such as ammp and art, frequency scaling degrades ED2 even with
flexible-pipeline routers. This is because network throughput degrades
with frequency scaling, even when flexible-pipeline router is used; and
the above applications have high throughput requirement. As a result,
these applications suffer from performance and ED2 degradation upon
frequency scaling. Furthermore, extended execution time also leads to
more static energy consumption, which in turn further degrades ED2.

The decision of scaling down network frequency should be specific
to each application. In our case, the four out of six benchmarks benefit
from frequency scaling. For some applications, such as blackscholes,
aggressive frequency scaling adversely degrades ED2. This is because
for blackscholes, when the scaling factor is increased from 2 to 4, the
decrease of system energy (0.4%) cannot offset the increase of CPI
(2.4%). As a result, in some cases it is undesirable to aggressively
scale down network frequency. It is worth pointing out that cache
miss rate is only one metric for determining optimal router frequency.
Other performance metrics, such as router utilization, can also serve
as good indicators.

V. CONCLUSION

This paper proposes flexible-pipeline routers that are capable of
re-balancing the pipeline stages upon voltage and frequency scaling,
while operating the cores at the original frequency. The hardware
complexity for supporting pipeline rebalancing is minimal. We com-
pare 8-core mesh-based CMP systems with fixed- and flexible-pipeline
routers running realistic workloads, respectively. When frequency is
scaled down, energy reduction is dramatic for both systems, while
the performance degradation can be low to medium. We compute
the system ED2 and show that for some benchmarks this value
is noticeably improved with frequency scaling, while for others, it
degrades. The improvement is application-specific and we see a close
relationship with the cache miss count. However, for systems with
fixed-pipeline routers, both throughput and latency degrades; while
for systems with flexible-pipeline routers, latency remains unchanged
as throughput degrades. Thus, as long as the network throughput is
low, frequency-scaling on systems with flexible-pipeline routers are
able to achieve energy saving with minimal performance degradation;
and thus are more energy-efficient.

The proposed routers are able to improve energy-efficiency of the
system by exploiting the fact that certain workloads are latency-
sensitive, but are not throughput-intensive. The proposed technique can
work in tandem with (and are largely orthogonal to) other techniques
that are intended to reduce router power, such as router bypassing [5]–
[7], router pipeline bypassing [10], speculative switch arbitration [8],
as well as various congestion management strategies [14]. For routers
that support bypassing and speculative arbitration, it is still possible
to re-balance the pipeline stages, but we must take care to only re-
balance the non-bypassed pipeline stages. Existing congestion control
mechanisms can work in NoC with flexible-pipeline routers, although
network bottlenecks may shift as a result of frequency scaling.

In this paper, we only demonstrate the benefit of flexible-pipeline
routers through static frequency scaling. Being able to dynamically
adjust router frequency and balance router pipeline allows the system
to adapt to dynamic behaviors of the programs. Such techniques will
be explored in our future work.

ACKNOWLEDGMENT

This work is supported in part by grants from National Science
Foundation under CNS-0834599, CSR-0834599, CPS-0931931, and
CCF-0903427, a contract from Semiconductor Research Cooperation
under SRC-2008-TJ-1819. We would like to thank all anonymous
reviewers for their constructive comments that help improve the quality
of this paper.

REFERENCES

[1] H. Wang, L.-S. Peh, and S. Malik, “Power-driven Design of Router
Microarchitectures in On-chip Networks,” in Proc. Int. Symp. Microar-
chitecture, 2003, pp. 105–116.

[2] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote,
N. Borkar, and S. Borkar, “An 80-Tile Sub-100-W TeraFLOPS Processor
in 65-nm CMOS,” J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[3] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heteroge-
neous Chip Multiprocessors,” Computer, vol. 38, pp. 32–38, 2005.

[4] F. Bower, D. Sorin, and L. Cox, “The Impact of Dynamically Heteroge-
neous Multicore Processors on Thread Scheduling,” IEEE Micro, vol. 28,
no. 3, pp. 17–25, May. 2008.

[5] U. Y. Ogras and R. Marculescu, “It’s a small world after all: NoC
Performance Optimization via Long-range Link Insertion,” IEEE Trans.
VLSI Systems, vol. 14, no. 7, pp. 693–706, 2006.

[6] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual Channels:
Towards the Ideal Interconnection Fabric,” in Proc. Int. Symp. Computer
Architecture, 2007, pp. 150–161.

[7] M. F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman, E. Socher,
and S.-W. Tam, “CMP Network-on-chip Overlaid with Multi-band RF-
interconnect,” in Proc. Int. Symp. High-Performance Computer Architec-
ture, 2008, pp. 191–202.

[8] L.-S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture
for Pipelined Routers,” in Proc. Int. Symp. High-Performance Computer
Architecture, 2001, pp. 255–266.

[9] R. Mullins, A. West, and S. Moore, “The Design and Implementation of
a Low-Latency On-Chip Network,” in Proc. Asia & South Pacific Design
Automation Conf., 2006, pp. 164–169.

[10] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A 4.6Tbits/s
3.6GHz Single-cycle NoC Router with a Novel Switch Allocator,” in Proc.
Int. Conf. Computer Design, 2007, pp. 63–70.

[11] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic Voltage Scaling with Links
for Power Optimization of Interconnection Networks,” in Proc. Int. Symp.
High-Performance Computer Architecture, 2003, pp. 91–102.

[12] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir,
M. J. Irwin, M. Yousif, and C. R. Das, “Energy Optimization Techniques
in Cluster Interconnects,” in Proc. Int. Symp. Low Power Electronics &
Design, 2003, pp. 459–464.

[13] S. E. Lee and N. Bagherzadeh, “A Variable Frequency Link for a Power-
aware Network-on-chip (NoC),” Integration, the VLSI Journal, vol. 42,
no. 4, pp. 479–485, 2009.

[14] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. R.
Das, “A Case for Dynamic Frequency Tuning in On-chip Networks,” in
Proc. Int. Symp. Microarchitecture, 2009, pp. 292–303.

[15] Y. Hirata, H. Matsutani, M. Koibuchi, and H. Amano, “A Variable-
pipeline On-chip Router Optimized to Traffic Pattern,” in Int. Workshop
on Network on Chip Architectures, 2010, pp. 57–62.

[16] N. Agarwal, L.-S. Peh, and N. Jha, “Garnet: A Detailed Interconnection
Network Model inside a Full-system Simulation Framework,” Princeton
University, Tech. Rep. CE-P08-001, 2008. [Online]. Available: http:
//www.princeton.edu/∼niketa/garnet

[17] S. Sapatnekar, Timing. Boston, MA: Kluwer Academic Publishers, 2004.
[18] T. Sakurai and A. R. Newton, “Alpha-power Law MOSFET Model and Its

Applications to CMOS Inverter Delay and Other Formulas,” J. Solid-State
Circuits, vol. 25, no. 2, pp. 584–594, 1990.

[19] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”
SIGARCH Computer Architecture News, vol. 33, pp. 92–99, 2005.

[20] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb
2002.

[21] A. Kahng, K. Samadi, B. Li, and L.-S. Peh, “ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration,” in Proc. Design, Automation & Test in Europe Conf., 2009,
pp. 423–428.

[22] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proc. Int.
Symp. Computer Architecture, 2000, pp. 83–94.

[23] “SPEC OMP2001,” Available at http://www.spec.org/omp/.
[24] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, J. Pisharath, G. Memik,

and A. Choudhary, “MineBench: A Benchmark Suite for Data Mining
Workloads,” in IEEE Int. Symp. on Workload Characterization, 2006, pp.
182–188.

[25] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proc. Int. Conf.
Parallel Architectures and Compilation Techniques, 2008, pp. 72–81.

408

