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Abstract—In heterogeneous multicore systems, implementing
a programmer-friendly memory consistency model while maxi-
mizing memory-level parallelism is challenging. Ideally, memory
accesses can be performed out of order as long as program
order is not violated. But enforcing memory access order at
the end-point (e.g., a core) prohibits a number of architecture
optimizations and limits memory-level parallelism. In this work,
we explore the opportunity of preserving memory access order
inside the on-chip interconnection network. We propose a hybrid
switching networks-on-chip (NoC) attached with a light-weight
token ring network to guarantee global memory access order.
The hybrid switching NoC that supports both packet and circuit
switching serves as the underlying communication infrastructure,
while the token ring network is used to preserve memory order
among multiple ordering points. Our proposed design enables
strong memory consistency models and deterministic program
execution, with negligible performance overhead compared to an
un-ordered packet switching network.

I. INTRODUCTION

Memory consistency models specify how reads and writes
from one thread are visible to other threads. A key aspect
in implementing a memory consistency model is to maintain
certain memory access order. A strong memory model such
as sequential consistency (SC) does not allow any memory
reordering [1]. SC is intuitive for programmers to reason
about. Debugging programs under SC is straightforward due to
its good reproducibility and predictability. However, strong
memory models prevent many optimizations and degrade
performance. As a result, both CPUs and GPUs adopt weaker
memory consistency models, which enable certain degrees of
memory access reordering for better memory-level parallelism.
Many modern CPUs adopt total store ordering (TSO), which
guarantees stores from the same thread to occur in program
order while allowing younger reads to bypass pending stores [2].
Many commercial GPUs adopt release consistency (RC) models
that rely on programmers to explicitly manage communication
and synchronization operations [3]. While weak memory
models might provide better performance, debugging becomes
extremely difficult. Because memory reorderings occur in an
unpredictable manner due to the relaxed semantics of weak
consistency models, programmers are required to understand
the program to ensure the correct memory access order.

Implementing a programmer-friendly memory consistency
model while maximizing memory-level parallelism is challeng-
ing, especially in heterogeneous systems where data-parallel
cores generate tremendous amount of outstanding memory

requests. End-point ordering at cores is expensive, because it
prohibits a number of architecture optimizations. However,
if the correct memory operation order is provided in the
interconnection network during message transmission, we can
potentially improve the performance, as memory instructions
can still be reordered inside each core. Another advantage of
in-network memory ordering is that the implementation can
be independent of the core architecture and the underlying
cache coherence protocol, which is particularly attractive for
future heterogeneous systems where a variety of computation
resources are integrated together in the form of chiplets [4].

In this work, we explore the opportunity of preserving
memory access order inside the NoC. Packet switching NoCs
are widely used in multicore and many-core systems due
to its flexibility and scalability [5]–[7]. However, packet
switching NoCs do not inherently guarantee message order
and could result in uncertainties during message transmission.
Circuit switching NoCs, on the other hand, are predictable
and can preserve message order inside the network [8],
[9]. The combination of packet and circuit switching NoCs
provides us a communication infrastructure that can effectively
enforce memory access order within the network. Based
on the above observations, we propose a NoC design that
enables in-network memory access ordering for CPU-GPU
heterogeneous multicore systems. The proposed NoC consists
of a hybrid switching main network and a light-weight token
ring network. The hybrid switching network that supports
both packet and circuit switching handles heterogeneous traffic
efficiently. The light-weight token ring network maintains
the global order of memory requests. The proposed NoC
architecture ensures deterministic program execution, which
simplifies multi-threaded program debugging in heterogeneous
systems. Compared to an un-ordered packet switching NoC, our
design causes only 0.7% and 1.0% performance degradation
in 16-node and 36-node heterogeneous systems, respectively.

II. BACKGROUND AND MOTIVATION

Consider the example shown in Figure 1 involving two
cores (C0 and C1) and two shared variables (x and y) stored at
different memory locations (M3 and M1). In the code snippet
presented in Figure 1a), C0 first writes to x, and then writes
to y; while C1 first reads from y, and then from x. Program
order (PO) is indicated by the arrow. Now assume both x and
y are initialized to 0 at the beginning of program execution, as
suggested by Figure 1b). Due to the uncertainty of message
traversal latency in packet switching NoCs, these read and978-1-4673-9030-9/20/$31.00 c©2020 IEEE
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Fig. 1. Message transmission in an unordered packet switching network.

write requests might arrive at the memory controllers in any
order, even though they are issued from the cores in program
order. Figure 1c) suggests one possible order, in which req1
from C0 arrives at M1 first and writes to y, followed by req0
from C1 that reads the value of y; then req1 from C1 reads the
value of x, followed by req0 from C0 writing to x. Following
the suggested order, the value of (x,y) read by C1 is (0,1).
Depending on the memory consistency model the underlying
machine assumes, this result can be illegal as it violates the
program order (Figure 1d)).

In order to guarantee the correct result, the core has to
maintain the order of read/write requests. One possible way
is to stall the later write operations until the previous writes
are completed. Such end-point ordering can be very expensive
and cause performance degradation. Trade-offs can be made
between performance and programmability–relaxed memory
consistency models allow reordering of read/write operations
while programmers are responsible for adding fence instructions
for correct program execution. However, if a program is not
properly written, the memory operations may be performed in
an order different from what the programmer expects, resulting
in unpredictable program behaviors. In the era of heterogeneous
multicore architecture, this will lead to significant debugging
effort given the mass number of threads supported by the
systems. Having realized that end-point ordering is expensive
and relaxed memory model is not programmer-friendly, the
goal of this work is to seek answers to the question: How can
we exploit memory level parallelism in heterogeneous systems
without imposing heavy burdens to programmers?

III. MEMORY ACCESS ORDERING NETWORK DESIGN

In this section, we first give an overview of the proposed
ordering network, and then describe the main network, token
network, and network interface designs in detail.

A. Network Overview

At a high level, the ordering network consists of: 1) a hybrid
switching main network that supports both packet and circuit
switching; 2) a light-weight token ring network passing around
a token to ensure global memory access order; and 3) network
interface (NI) controllers that examine and update the token,
as well as store and manage memory requests.

Hybrid switching main network. A hybrid switching NoC,
built upon a packet switching NoC, allows traffic to be sent in
both packet and circuit switching manners. Dedicated circuit
switching paths are established between source-destination

communication pairs. Once a connection is set up, messages
from the same source to the same destination can repeatedly
reuse the path without destroying the connection. Circuit
switching have two major advantages compared to packet
switching. First, communication latency is predictable because
the length of each circuit switching path and message traversal
latency are deterministic. Second, buffering and routing are not
required, therefore circuit switching has lower per-hop delay.
Time-division multiplexed (TDM) hybrid switching NoC allows
fine-grained sharing between packet and circuit switching data
paths [8], which is potentially a good candidate for ordering
network messages. In our proposed NoC, we enforce memory
access order by routing them through circuit switching, while
the rest of the traffic is routed through packet switching without
preserving any order (more details in Section III-B).

Token ring network. This light-weight token network
connects ordering points into a ring. Ordering points are nodes
in which global memory access order is maintained, so they
must be in the level of memory hierarchy that is visible to
all cores (e.g., shared last-level caches, directories, memory
controllers). A token is used for maintaining access order, and
it is passed through the token network from one ordering point
to another. In the proposed design, each memory request that
needs to be ordered is assigned an ID. The token records the
IDs of the requests that are being served by each ordering
point. Each core generates its own request ID independently.
Therefore, the token contains n IDs for an n-core system. The
network interface controllers at the ordering points modify the
token when all requests with the same ID from the same core
are completed.

Network interface. The NI is responsible for receiving and
examining the token at each ordering point, making sure that the
connected memory component (e.g., last-level cache, directory,
memory controller) only processes requests whose IDs are
smaller than or equal to the ID indicated by the token. Once
the memory component finishes processing the requests, the NI
will set the corresponding bit inside the token. The NI will also
increment the token’s request ID when all memory components
have finished processing the old requests. The updated token
is then injected back to the token network. Notice that a single
memory instruction could result in multiple memory requests
sending to multiple destinations, it is possible that more than
one memory component receive requests from the same core
with identical request ID. To guarantee in-order memory access,
the NIs are also responsible for storing and managing requests
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Fig. 2. Hybrid switching router microarchitecture.

when necessary. Requests from the same core are grouped
and stored in an array, from which requests with smaller IDs
are issued prior to those with larger IDs. Details of the NI
microarchitecture are presented in Section III-D.

B. Main Network Microarchitecture

The beauty of a hybrid switching NoC is that, its circuit
switching capability ensures deterministic message transmission
latency, which is critical for ordering memory accesses. We use
a hybrid switching NoC as our baseline network, and establish
circuit switching connections from cores to ordering points.

1) TDM-based Hybrid Switching Router: A hybrid switching
router supports both packet and circuit switching. Figure 2
shows the microarchitecture of a hybrid switching router, in
which the components in grey (i.e., slot tables and latches) are
for circuit switching. With the support of slot tables, the hybrid
switching router allows both packet and circuit switching traffic
to share the same communication fabric through time-division
multiplexing [8]. A slot table has limited number of entries; and
it is looked up by the allocation logic every cycle in modulo-
fashion. A slot table entry indicates whether a particular cycle
is reserved for a circuit switching data path (when the V bit is
1), or packet switching (when the V bit is 0). It also keeps track
of the input-output port mapping for a circuit switching path
(indicated by the OUT field). A flit is injected to either the
packet switching data path (i.e., FIFOs) or the circuit switching
data path (i.e., latch) from the source NI. Once the flit is on
circuit switching data path, it is forwarded without buffering
and routing at each router.

For example, in Figure 2, slot table entry 1 for input port
1 is valid, indicating that a circuit switching connection is
established for this cycle. According to the OUT field, output
port 4 is reserved for this connection. Therefore, if a circuit
switching flit arrives in cycle 1+n×S (S is the slot table size
and n is an arbitrary number), it is then directly forwarded
to output port 4 without performing route computation and
arbitration. Assume link traversal takes 1 cycle, the flit will
arrive at the downstream router in 2 cycles. Since buffering is
not required for circuit switching flits, slot table entry 3 in the
downstream router must be configured properly beforehand to

accept and forward this flit. In a TDM-based hybrid switching
router, if a time slot is reserved for circuit switching but a
circuit switching flit does not present in that cycle, a packet
switching flit is allowed to use this time slot. Such design
greatly improves router utilization.

2) Slot Table Configuration: Slot tables are critical in circuit
switching NoCs, because they ensure that flits are forwarded
to the correct destinations without any contention during
transmission. Slot tables can be configured either dynami-
cally during run-time or statically at design-time. Dynamic
configuration captures run-time traffic patterns and adapts well
to traffic behavior changes. However, a dynamic approach
usually requires a separate setup network and therefore adds
additional hardware overhead to the NoC. Furthermore, the lack
of global information makes dynamic slot table configuration
less efficient–conflict happens when two circuit switching paths
try to reserve the same slot table entry, which results in a setup
failure and possibly infinite retries. As a result, circuit switching
path reservation in a dynamic approach is not guaranteed to
be successful. In contrast, a static approach programs the slot
tables at design-time without introducing additional hardware
overhead. However, slot allocations are usually fixed hence
lacks flexibility. In our proposed design, we use the static
approach for three main reasons. Firstly, the main purpose of
using a circuit switching network is to guarantee deterministic
message latency and message ordering, while flexibility and
adaptiveness are less important. Secondly, our proposed NoC
requires circuit switching connections for ALL source to
destination communication pairs, which might not be satisfied
by dynamic approaches. Thirdly, a static approach avoids setup
latency, hence eliminates unnecessary communication delay.

We present a slot allocation algorithm in Algorithm 1.
The first input parameter comm pairs is the number of
communication pairs for which circuit switching connections
are required. For each communication pair, the path (essentially
a list of links that messages traverse through) from the source
to the destination is stored in the second input parameter
path[comm pairs]. The output starting slot id[comm pairs]
is the starting time slot entry assigned to each communication
pair at the source router.

Line 1 initializes a global slot table, keeping track of time
slot assignment for all communication pairs. The g slot table
is a 2D array, which has as many rows as there are in a slot table.
The key idea behind this algorithm is the following. For each
path, place its link ids one after another to the corresponding
rows inside g slot table. Globally, placing link id m in row n
means that link m is assigned to a circuit switching connection
in cycle n. Slot n should never be assigned to the same link m
for another path, because having the same link ID appear in the
same cycle indicates a conflict in circuit switching setup. If a
conflict occurs between two paths, the latter path has to revert
all its slot allocations and choose a new row from g slot table
to start again, until all its links are placed without conflict.
Every path starts placing its first link from the first row, as
shown in Line 4. Line 8-19 attempt to place all links from a
path into g slot table. When a conflict occurs, the failed path



Algorithm 1 Slot allocation algorithm
Input: comm pairs, path[comm pairs]
Output: starting slot id[comm pairs]

1: g slot table[ ][ ]←{}
2: starting slot id[comm pairs]←{0}
3: for i = 1 to comm pairs do
4: starting slot = 0;
5: succeed = false;
6: while (!succeed) do
7: slot id = starting slot;
8: for each link id in path[i] do
9: if (g slot table[slot id].find(link id)) then

10: roll back(); //undo all changes for this path
11: succeed = f alse;
12: starting slot++;
13: break;
14: else
15: slot table[slot id].push back(link id);
16: succeed = true;
17: slot id++;
18: end if
19: end for
20: end while
21: starting slot id[i] = starting slot;
22: end for

rolls back its previous slot allocations and starts a re-try from
a new starting slot, as shown in Line 10-13. If there is no
conflict, the link id is then pushed back to the corresponding
row in g slot table, as stated in Line 15-17. In Line 21, the
starting slot is stored when slot allocation is completed for a
communication pair.

Given the start cycle of a slot entry at the source, slot table
allocation in each individual router for a circuit switching path
can be easily calculated. The slot allocation algorithm has a
time complexity of O(N3), where N is the number of nodes
in the system. To connect all communication pairs through
circuit switching, a larger system might need larger slot tables.
In general, the minimum slot table size required to establish
all circuit switching paths is proportional to the size of the
multicore system.

C. Token Network Microarchitecture

Token network is used to preserve memory access order
among multiple ordering points. Ordering points are shared
but distributed structures where memory accesses are being
handled. For example, directories or memory controllers are
considered as ordering points. Only one token is passed around
all ordering points through this light-weight token network.

Token format. The token format is shown in Figure 3(a). For
a system with n cores and m ordering points, the token contains
n fields, and each field corresponds to an individual core. Inside
each field, req id indicates the ID of the memory request that
is currently being processed by the ordering points. Followed
by m valid bits (i.e., M0, M1, ..., Mm), each represents an

req_id M0 M1 … Mm req_id M0 M1 … Mm req_id M0 M1 … Mm…

core 0 core 1 core n

6-bit 1-bit

(a) Token format

M M

M M
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(b) Token network and token router
Fig. 3. Token format and token network architecture.

core n

core 1

req_id addr
core 0

ctrl logic

=
=
=
=

Re-order Arrays

UO Queue
From Main
Network

To Local
Node

req_id flag req_id flag req_id flag…
core 0 core 1 core n

Token
Buffer

set/reset

Token Examination Logic

From Token
Network

To Token
Network

UO Queue

OD Queue

To Main
Network

From Local
Node

Packet Switching

Circuit Switching

Fig. 4. Network interface microarchitecture.

ordering point. A valid bit is set when an ordering point finishes
processing the memory request with the exact req id indicated
by the token. When a core executes a load/store instruction
and generates new memory request(s), it increments its local
request ID by 1 and embeds this ID with the request packet(s),
which is(are) then sent to the ordering point(s). All memory
requests will be buffered at the destination network interfaces.
Then, the network interface at each ordering point examines
the token and forwards requests to memory components when
certain constraints are satisfied (details in Section III-D).

Token network. The token network is a unidirectional ring
with extremely simple token routers. As shown in Figure 3(b), a
token router receives the token from the upstream token router,
forwards the token either to the NI or to the downstream token
router, depending on whether the NI needs to examine the token.
If the NI decides to accept the token, the token is removed
from the token network. After processing, the NI updates the
token and injects it back into the token network. In any given
time, there is at most one token in the token network.
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D. Network Interface Microarchitecture
Network interface plays an important role in ordering

memory accesses. As shown in Figure 4, the proposed NI
contains an un-ordered (UO) queue, an ordered (OD) queue,
re-order arrays, a token buffer, and a token examination logic,
usages of which are explained below.

1) Sending and Receiving Process: At the source NI,
messages that require to be ordered are buffered in OD Queue
and sent through circuit switching, while the rest are buffered
in UO Queue and send through packet switching. Ordered
requests are injected into the main network when the reserved
time slots are ready. Un-ordered requests are sent when the
output port is free. Upon receiving, un-ordered requests are
buffered in a first-in-first-out manner at the destination NI.
Ordered requests are stored in different Re-order Arrays based
on their source nodes, that is, ordered requests from core n are
stored in the re-order array reserved for core n. An ordered
request is retrieved from the re-order array by referring to
its req id, indicated by the Token Buffer. Token buffer is a
structure that interacts with the token. Like the token, in an
n-core system, a token buffer has n fields. Inside each field,
req id indicates the memory request that is being processed,
which is just a copy from the token. When a request with a
particular req id is being served, the corresponding f lag bit
in the token buffer will be set to 1.

2) Token Update Process: The Token Examination Logic is
responsible for updating the token. When all valid bits (M0-
Mn) of a particular core inside the token are set, the req id
for that core will be incremented by 1, meanwhile all valid
bits will be reset to 0. The token examination logic is also
responsible for updating the corresponding fields in the token
buffer, that is, when the logic detects that the token’s req id is
larger than that of the token buffer, it updates the token buffer’s
req id and resets the flag. Since the ordered requests are sent
through circuit switching from the source, they are guaranteed
to arrive in-order at the same destination. Therefore, a re-order
array should see requests coming with ascending req ids. This
feature is important because it allows an NI to time-out when
no further request is arriving (more details below). If the req id
in the token buffer is smaller than the smallest req id observed
from the re-order array, the NI will simply skip processing this
request by setting the flag to 1.

3) Time-out Process: Time-out happens if the token’s req id
is larger than the largest req id observed from the re-order
array. For example, the token’s req id is x, and the largest
req id in the re-order array of NIk is x−1. This means at least
one ordering point other than NIk has received and started
processing request x. While NIk is uncertain whether it will
receive request x (x can be a unicast), it needs to start the
time-out process to avoid starvation. The time-out window in
our design is twice the number of slot table entries. Time-out
is aborted if an NI receives a request whose ID is larger than
the token’s req id. In the above example, NIk will stop the
time-out process if it receives request x+1. This is because
memory requests from the same core is guaranteed to arrive
in-order. When NIk receives request x+1, it is ensured that
request x will not appear in NIk.

4) Walk-through Example: Figure 5 demonstrates how the
proposed mechanism maintains memory access order. In this
example, four ordering points are connected to the token
network through NIs (NI0−3). For simplicity, we only show
one re-order array in each NI, assuming only one core is
sending requests. This core executes three memory instructions
and generates three memory requests. The first request (req1)
is a broadcast that requires accessing all four ordering points.
The second request (req2) is a unicast that accesses only one
ordering point. And the third request (req3) is a multicast that
accesses three ordering points. The re-order array in NI0 stores
only req1. In NI1, 3 requests req1−3 are waiting to be served.
NI2 and NI3 both have 2 pending requests.
i) Initially, req id is set to 1 and f lag is set to 0 in all
token buffers. The token has req id set to 1 and 4 valid
bits corresponding to 4 ordering points set to 0.

ii) In T1, all ordering points finish serving req1, so f lag bits
are set to 1 in all NIs. Meanwhile, the NIs examine and update
the token, until all the valid bits inside the token become 1.
Then one of the four NIs manipulates the token by setting
req id to 2 and all valid bits to 0.

iii) In T2, after the token has been updated, it continues circling
in the token network and notifies the ordering points to process
req2. Now all the token buffers have the latest information.

iv) Note that req2 only presents in NI1, therefore the other
NIs can skip this request. Both NI2 and NI3 see requests
with larger req ids inside their re-order arrays. Since requests
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are guaranteed to arrive in-order through circuit switching
(Section III-D2), NI2 and NI3 can skip req2 by setting f lag
to 1, as shown in T3. When the token reaches NI2 and NI3,
its valid bits will be set to 1 by the token examination logic.

v) In T4, NI1 sets its flag to 1 after completing req2. However,
until now, f lag bit in NI0 is still 0. This is because NI0 is still
waiting for req2 or a request with a larger req id. Remember
the arrival of circuit switching messages are deterministic, the
NI knows when a message from a particular node is to arrive
by referring to the slot table. Therefore, after noticing some
of the valid bits in the token are set, NI0 starts to time-out .

vi) In T5, NI0 sets f lag to 1 after the time-out window and
manipulates the token. All the ordering points should start
processing req3.

vii) In T6, all token buffers are updated and the above described
process repeats.

IV. EVALUATION

In this section, we describe the evaluation infrastructure and
present the experimental results, followed by a discussion on
the flexibility and limitations of the proposed network.

A. Evaluation Infrastructure

We use gem5-gpu [10] as our evaluation infrastructure.
Simulator parameters can be found in Table I. Figure 6 shows
the topology of the evaluated systems. The 16-node (4-by-4
mesh) system contains 2 CPU cores, 6 GPU cores, 4 L2 cache
banks shared between CPU and GPU, and 4 memory controllers
connected to off-chip memories. CPU and GPU share the same
memory address space. MESI protocol is used to keep both
CPU and GPU caches coherent. Directories are located at L2
caches (shaded in figure), whose NIs are connected to the token
network. Similarly, the 36-node (6-by-6 mesh) system has 8
directory nodes connected to the token network. We augment
the baseline Garnet [11] network with a TDM-based circuit
switching network as well as a token ring network. Token
width is dependent on the number of cores and directories. In
the 36-node system, limited by the token network’s link width,
the token must be sent in multiple cycles. Therefore, the NI
is responsible of breaking the token into multiple flits when
sending and reassemble the token when receiving. The main
network and token network configuration parameters are also
listed in Table I.

We use CUDA applications from Rodinia benchmark
suites [12] as accelerator workloads. Explicit memory copies
between CPU and GPU are removed from the code and pointers

TABLE I
SYSTEM CONFIGURATION AND NETWORK PARAMETERS

CPU Configuration
Processor Single-issue in-order

L1 Cache Split private I/D caches, each 64KB, 4-way set
associative, 64B block size, 1-cycle latency

GPU Accelerator Configuration

Accelerator 32-wide SIMD pipeline, 1024 threads, 32KB
shared memory

L1 Cache Split private I/D caches, each 16KB, 4-way set
associative, 128B block size, 2-cycle latency
Memory Configuration

L2 Directory Shared banked, 2MB/bank, 8-way set
Cache associative, 128B block size, 8-cycle latency

Memory 4GB DRAM, 200 cycle access latency
Main Network

Topology 16/36-node, 2D-Mesh

Router 2 stage, 4 VCs/port, 5 buffers/VC, Minimal
Adaptive Routing

Channel Width 32 Bytes

Packet Size 4 flits (circuit switching packet)
5 flits (packet switching packet)

Slot Tables 16-node: 16-entry slot table
36-node: 32-entry slot table

Token Network

Token Width 16-node: 80 bits
36-node: 336 bits

Link Width 16 Bytes

are used instead. The evaluated workloads include: backprop,
bfs, gaussian, hotspot, kmeans, nn, nw, and pathfinder. We
execute only one application each time on one CPU, which
then launches kernels across all GPU cores.

B. Circuit Switching Decision

Circuit switching all memory requests is unnecessary and can
cause performance penalty. For read/write requests accessing
private data, or read requests accessing read-only shared data,
sending them with un-ordered packet switching network is safe.
However, write requests that access shared data must be ordered
properly. Prior work have proposed memory management unit
and OS page protection mechanisms to classify memory blocks
into private and shared [13]–[15], so that access safeness can
be determined. In this work, we use a similar mechanism as
proposed by Cuesta et al. [14] to decide whether to circuit
switching a write request or not. In particular, we extend the
page table entries with a core identifier (CID) field, a read-only
(RO) bit, and a shared (SH) bit. Memory accesses to a page
with RO bit unset and SH bit set need to be ordered. TLB
entry is extended with a lock (LK) bit. When LK bit is set,
all write accesses must be sent through circuit switching to
maintain the order. Upon a TLB miss, the TLB miss handler
refers to the page table and checks the ownership (CID) of the
page. If the page is owned by another core with RO bit unset,
the TLB miss handler allocates a TLB entry and sets its LK
bit. Meanwhile, if the SH bit is also unset, a notification is
generated and sent to the owner of this page, which will then
set the LK bit in the owner’s TLB entry. Such notification is
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Fig. 7. Program execution time (normalized to the Un-ordered system).

not required when TLB miss handler finds the SH bit set in
the page table entry, since the combination of RO bit unset
and SH bit set means all the sharers already have their LK bits
set in TLB entries. Notice that in GPGPU applications, CPU
initializes shared data before a kernel launch, and usually it
does not access the data until kernel completion. Therefore,
CPU should not update the CID field in page table entries
during initialization. Once initialization is finished, a CPU TLB
shootdown is required, such that later accesses to the shared
data can be captured properly.

C. Experimental Results

For evaluation, we compare our proposed mechanism against
1) a baseline system, which uses only packet switching NoC
and does not maintain any ordering, referred to as Un-ordered;
and 2) a system using only packet switching NoC and maintains
total store order (TSO) in each core, named as Core-ordered.
TSO guarantees that the sequence in which store instructions
appear in memory for a given processor is identical to the
sequence in which they were issued by the processor [16].
To support TSO, we provide a FIFO write buffer for each
core. The write buffer must be drained before each atomic
instruction and memory fence instruction [17]. Our proposed
work is referred to as Network-ordered in the evaluation.

Figure 7 shows the normalized execution time for 16-node
and 36-node systems. In 16-node system, Network-ordered
system degrades the performance by 0.7% on average, in
comparison to Core-ordered which incurs 2.6% performance
penalty. In 36-node system, execution time is increased by 1.0%
on average in Network-ordered system, in comparison to 2.5%
for Core-ordered system. Overall, enforcing memory access
order inside the network has insignificant performance impact.
This is mainly because the parallelism in GPGPU applications
is capable of hiding memory access latency so that long access
delay is tolerable. The second reason is that SIMD accelerators
are simple in-order cores, which leads to fewer optimization
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opportunities in terms of re-ordering memory operations to
begin with. Network-ordered system performs better than Core-
ordered system because write requests from a single core are
parallelized, in other words, the core does not need to stall
and wait for previous write requests to complete.

Throughput intensive applications such as gaussian, nn,
and nw suffer noticable performance degradation in Network-
ordered system. Figure 8 shows the average link utilization
and average network latency for 36-node configuration. The
proposed network forces some write requests to be transferred
in order through circuit switching, which under-utilizes the
available on-chip bandwidth. When traffic injection rate is
low, circuit switching can even reduce packet transmission
latency, which in turn improves the overall performance for
some applications (e.g., backprop, pathfinder). However, when
cores begin to generate considerable amount of outstanding
requests, circuit switching can impact the performance because
it takes up network bandwidth from packet switching.

D. Area and Power Overhead

We use DSENT [18] to estimate the area and power
consumption of the proposed design. We consider 22nm
technology node and assume the NoC operates at 1.5GHz.
As a reference point, for the 36-node system described in
Section IV-A, the hybrid switching router is 0.27mm2, with a
power consumption of 0.31W . The area and power consumption
of a token router are 0.00085mm2 and 0.00129W , respectively.
To support message ordering in the 36-node system, assuming
64-bit memory address, the area and power overhead (UO/OD
queues, re-order arrays, and token buffer) added to an ordering
point NI are 0.19mm2 and 0.23W , respectively.

E. Discussions

While the proposed network can potentially provide a strong
memory model with minimal performance overhead, it is based
on several assumptions. First, we assume that the optimizations
performed during compile time and kernel launch time do not
violate program order. However, optimizations such as common
subexpression elimination and dead code elimination might
affect the access to shared data, which in turn violates the
program order. Second, we assume the underlying processors
are SIMD-like cores and applications exhibit good thread-level
parallelism, and CPUs are less active during kernel execution.
Enforcing memory access order in superscalar out-of-order
CPU cores can be more expensive due to lacking parallelism
to hide long access latencies [1], [19].



V. RELATED WORK

Hybrid switching NoCs have been studied thoroughly in both
homogeneous and heterogeneous multicore systems. Spacial-
division-multiplexing-based (SDM-based) hybrid switching
NoCs have been proposed to provide QoS support in SoCs [20]–
[22]. Enright Jerger et al. [23] use SDM-based hybrid switching
NoCs to improve the performance of coherence-based traffic
in CMPs. TDM-based circuit switching provides bandwidth
and latency guarantees in Æthereal [24] and NOSTRUM
NoC [25]. More recently, TDM-based hybrid switching NoCs
for heterogeneous multicore and accelerator rich architectures
have been proposed [8], [9], [26], [27]. These works mainly
focus on reducing NoC energy consumption and are only able
to provide best-effort circuit switching communication. Our
proposed slot allocation algorithm guarantees all computation
cores are connected to ordering points through circuit switching.

SCORPIO [28] supports global ordering of requests on a
mesh network for snoopy coherence. SCORPIO consists of an
un-ordered packet switching main network for broadcasting
coherence messages, and a fixed-latency bufferless notification
network to achieve distributed global ordering. SCORPIO is
demonstrated to be efficient in CMP systems that contain
only CPU cores. However, in heterogeneous multicore systems,
snoopy coherence is less efficient than directory-based coher-
ence. Moreover, maintaining global ordering for wide GPU
data requires more buffering resource at the NIs.

One approach to preserve the memory access order is to rely
on a recorded sequence of requests and use network information
theory concepts to broadcast network coded messages. Xue
et al. [29] propose a network coding-based NoC architecture
to improve the NoC performance for multicasting. Duraisamy
et al. [30] propose a wireless NoC architecture to handle
high volumes of multicast injections. These techniques can be
applied on top of our proposal to improve system performance.

Hechtman and Sorin [17] revisit hardware memory models
in massively-threaded throughput-oriented processors like
GPGPUs and observe that sequential consistency achieves
the same performance compared to weak consistency models
on a variety of applications. While similar observation is made
in our work, we focus on heterogeneous multicore systems that
contain both CPU and GPU cores. Moreover, we propose to
push the responsibility of enforcing memory consistency to the
network so that performance critical hardware modifications
at cores can be avoided.

VI. CONCLUSION

Future computer systems can be extremely heterogeneous,
with various processors, accelerators, programmable logic, and
even heterogeneous memories such as DRAM and non-volatile
memory integrated into the same package [31]. Programming
and debugging in such a heterogeneous environment can
be challenging. In this work, we proposed an in-network
memory access ordering mechanism, which supports a stronger
memory consistency model than relaxed consistency and
allows programmers to easily reason about their program

execution. Evaluation results show that the proposed design
brings negligible impact to overall performance. We believe
the proposed NoC is an important step towards exploiting
memory-level parallelism while maintaining programmability
for heterogeneous architectures.
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